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Objective: High Level — Independent Retrievals

Network Observer

Object Sizes §§‘EEEE
Obj A = 2 KB OOO Trusted
Obj B=2KB Object Store
Obj C=1KB
Obj D =3 KB
Trusted
Object Store Client
1 KB
Object '
. M
T > =

« Client has retrieved an object from Trusted Object Store
* Network Observer’s goal is to identify which object was requested




Objective: High Level — Dependent Retrievals

Object Sizes Possible Sequences
ObjA=2KB

Obj B = 2 KB

Obj C =1KB

Obj D = 3KB

Network Observer

oQO

Trusted — N
Object Store = ——
3 KB 2 KB
Object Object

\\\f/

Ob:ect Sizes ossible Sequences
oo
06/ D=3k
Trusted
Object Store

Client

ni

Client has retrieved a sequence of objects from Trusted Object Store

* Network Observer’s goal is to identify which objects were requested




Objective: High Level

= Threat: A network observer with the following...
* Capability: discern the sizes of retrieved objects

* Goal: identify which object(s) was/were retrieved
* Knows:
¢ every object’s size and how often retrieved
¢ all possible sequences and how often retrieved (for the Dependent setting)

¢ the padding defense used by the object store
= Trusted Object Store’s Goal: Compute a padding scheme - | that...
1 . Uses paddlng to best thwart the adversary Note: The object store is only

willing to pad objects, i.e., it will

2. Controls the per-object overhead due to padding | not insert decoy objects.




Objective: Our Approach

= Objective: Minimize... = Notation:

* Independent Retrievals: 1(S;Y) and I.(S;Y)

* Dependent Retrievals: [ (g,?)

= Constraints: For a given max pad factor ¢ > 1:
* No object is padded by more than a factor of ¢
* Each object is served in full

Note: it's possible for some objects to remain isolated in our setting

I = mutual information

[x= Sibson mutual information of order infinity,
also referred to as min-capacity’ and maximal
leakage?

S = random variable for an object’s identity
Y = random variable for an object’s padded size
— denotes a sequence

1.
2.

M. Alvim, K. Chatzikokolakis, C. Palamidessi, and G. Smith, “Measuring information leakage using generalized gain functions,” 25th IEEE Computer Security Foundations, Jun. 2012. 7
I. Issa, A. B. Wagner, and S. Kamath, “An operational approach to information leakage,” IEEE Transactions on Information Theory, vol. 66, no. 3, Mar. 2020.



Objective: Our Chosen Metrics

= I(S;Y) Mutual Information " Notation:

« I(S;Y) =H(S)—H(S|Y) * H = entropy
* (3 = guessing entropy

* Since HI(S) is constant, minimizing [[(S;Y') thereby maximizes H(S | Y).

HH(SIY) 1
_|_ —

- G(S|Y) > y 5

= ]L-,O(S;Y) Sibson Mutual Information of Order Infinity

° [1] and [2] advocate for this metric because:

* T(S;Y) < Io(S;Y) overall distributions of S .

* ]IOO(S;Y) upper-bounds an adversary’s multiplicative gain in correctly guessing
any function of S after observing Y, over all distributions of S.

vim, K. Chatzikokolakis, C. Palamidessi, and G. Smith, “Measuring information leakage using generalized
B ns

gain functions,” 25th IEEE Computer Security Foundations, Jun. 2012.
. Wagner, and S. Kamath, “An operational approach to information leakage,” IEEE Transactions on Info.

formation Theory, vol. 66, no. 3, Mar. 2020. 8
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1(S;Y) : Per-Object Padding (POP)

= Setting:
* Each object is padded only once

= Key Insights:

- 1(S;Y) = H(S) — H(S | Y) = Hpﬂfs

¢ Sufficient to minimize H(Y)

* Optimal | - | will be a partition of contiguous blocks

¢ e.g., for ¢ = 1.05 and original object sizes:|100{105/109{110{113{ 114|115

* Optimal |- |will not be of the form: 105|105|114(115[115| 114|115

* Optimal | - | will be of the form: 105[105|114|114|114| 114|115

= Solution:
* Dynamic programming algorithm that runs in O(#Sz)




I(S;Y) : Per-Request Padding (PRP)

= Setting:
* Objects are padded anew with each request
= Key Insight:

* Special case of rate-distortion minimization?

= Solution:
* Use the iterative algorithm “Blahut-Arimoto”4° with:

*D(s,y) =0 If s can be padded to y
*D(s,y) = If s cannot be padded to y

3. C. E. Shannon, “Coding theorems for a discrete source with a fidelity criterion,” in Institute of Radio Engineers, International Convention Record, vol. 7, 1959.
4. R. Blahut, “Computation of channel capacity and rate-distortion functions,” IEEE Transactions on Information Theory, vol. 18, no. 4, Jul. 1972.
5. S. Arimoto, “An algorithm for computing the capacity of arbitrary discrete memoryless channels,” IEEE Transactions on Information Theory, vol. 18, no. 1, Jan. 1972.
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I.(S;Y): Padding without a Distribution (PwoD)

o Calculation'

logzz max P(Y = y|S—s)

S=s5)>0

* I.(S;Y) only requires that the object store know which
objects have a nonzero probability of being retrieved

= Solution:

* A greedy algorithm that runs in time linear in #3S
¢ e.g., for ¢ = 1.05 and original object sizes: 100[105{109/110[113][114[115

¢ PwoD runs from right-to-left assigning objects  [fjj £/ \ m

to padding groups as follows: 100[/105]109]11 15
100/ 109]109|115]/115]/115[115




Example Padding Schemes

In DUtS: Label URL (accessed Apr 25, 2021) Size (B)  DOWnloads
per day
PO https://images.unsplash.com /photo-1572095426476-808d659b4ea3 2493855 2.53
Pi htrps://images.unsplash.com /reserve /qstJZUtQ4uAjijbpLzbT_L0234824.JPG 3833489 27.92
P2 https://images.unsplash.com /photo-1583582829797- b2990fb9946b 7929946 5.41
C — 2 & P3 htps://images.unsplash.com /photo-1591672524177-261a7744a2b6 13322074 12.41
P4 htrps://images.unsplash.com /phoro-1579832888877-74d7a790df36 13589747 1.09
P5 htps:/ /images.unsplash.com /phoro-1558136015-7002a0f5e58d 16235142 5.54
P6 htrps://images.unsplash.com /photo-1586030307451-dfc64907aaab 16719886 10.65
P7 https://images.unsplash.com /photo-1558729923-720bbb76a430 10437984 5.07
P8 htps:/ /images.unsplash.com /phoro-1528233090455-e245a0c50575 25905442 2.27
P9 https://images.unsplash.com/photo-1559422721-1ed9b8d28236 34389677 423

Outputs:
POP PRP PwoD
y v v
s || [Po| |P1] |P2| |P3| [P4| |P5| [P6| |P7| [P8| |P9| s | |Po| |P1| [P2| |P3| |P4| |P5| [P6| |P7| [P8| |P9| s || |Po| |P1| |P2| |P3| |P4| |P5| |P6| |P7| |PS| |P9)|
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Competitors

Inputs:

C

Outputs:

2

Label URL (accessed Apr 25, 2021) Size (B) ~ DoWnloads

per day
PO https://images.unsplash.com /photo-1572095426476-808d659b4ea3 2493855 2.53
Pi htrps://images.unsplash.com /reserve /qstJZUtQ4uAjijbpLzbT_L0234824.JPG 3833489 27.92
P2 https://images.unsplash.com /photo-1583582829797- b2990fb9946b 7929946 5.41
P3 htps://images.unsplash.com /photo-1591672524177-261a7744a2b6 13322074 12.41
P4 htrps://images.unsplash.com /phoro-1579832888877-74d7a790df36 13589747 1.09
P5 htps:/ /images.unsplash.com /phoro-1558136015-7002a0f5e58d 16235142 5.54
P6 htrps://images.unsplash.com /photo-1586030307451-dfc64907aaab 16719886 10.65
P7 https://images.unsplash.com /photo-1558729923-720bbb76a430 19437984 5.07
P8 htps:/ /images.unsplash.com /phoro-1528233090455-e245a0c50575 25905442 227
P9 https://images.unsplash.com/photo-1559422721-1ed9b8d28236 34389677 423

D-ALPaCA®

P-ALPaCA®

Padmé’

Y

2403855 4087710 0975420 14063130 17456085 10050840 27432405 34013070

y
|PO| [P1| [P2| [P3| [P4] [P5| |P6| [P7| |P8| |P9| | s

y

2555004 3866624 7005302 13360344 13631488 16252028 16777216 10022044 26214400 34603008

PO
P1
P2
P3
P4
P5
P6
P7
pPs
P9

6. G. Cherubin, J. Hayes, and M. Juarez, “Website fingerprinting defenses at the application layer,” Proceedings on Privacy Enhancing Technologies, vol. 2017, no. 2, 2017.
7. K. Nikitin, L. Barman, W. Lueks, M. Underwood, J.-P. Hubaux, and B. Ford, “Reducing metadata leakage from encrypted files and communication with PURBs,” Proceedings on Privacy

Enhancing Technologies, vol. 2019, no. 4, 2019.
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Evaluation: I

and [.(S;Y

I(S;Y) (bits)

1(S: Y) (bits)

W

| | | |
papmi ID-ALPACA BPwoD B P-ALPACA [JPOPL]PRP ‘

1.03 1.04 1.05 1.06 1.08

c
(a) Node]S dataset

1.01

Per-algorithm

| | |
‘ ‘ | papmt ID-ALPACA MPwoD B P-ALPACA [JPOP[] PRP
1.04 1.05 1.06 1.07 1.08 1.09

1.1

1.03

e
(b) Unsplash Lite dataset

mutual information. Error bars extend to I (S;Y). Lower values indicate better security.

15



Evaluation: I

Y

and [.(S;Y

I(S;Y) (bits)

1(S: Y) (bits)

|

| | | |
papmi ID-ALPACA BPwoD B P-ALPACA [JPOPL]PRP ‘

1.04 1.05 1.06 1.08

c
(a) Node]S dataset

1.01

|

1.02
1.02

Per-algorithm

| | |
‘ ‘ ‘ | papmt ID-ALPACA MPwoD B P-ALPACA [JPOP[] PRP
1.03 1.04 1.05 1.06 1.07 1.08 1.09

1.1
c

(b) Unsplash Lite dataset

mutual information. Error bars extend to I (S;Y). Lower values indicate better security.
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Evaluation: [(S;Y) and [.(S;Y

I(S;Y) (bits)

1(S: Y) (bits)

| | | |
papmi ID-ALPACA BPwoD B P-ALPACA [JPOPL]PRP ‘

l.,(S;Y)

1.01 1.02

1.03 1.04 1.05 1.06 1.08

c
(a) Node]S dataset

1.01 1.02

Per-algorithm

| | |
‘ ‘ ‘ | papmt ID-ALPACA MPwoD B P-ALPACA [JPOP[] PRP
1.03 1.04 1.05 1.06 1.07 1.08 1.09

1.1
c

(b) Unsplash Lite dataset

mutual information. Error bars extend to I, (S;Y). Lower values indicate better security.
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Evaluation: Recall & Precision

Precision

Precision

1.0
0.8

0.6 -y

0.4
0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0 02 04 06 0.8 1.0

0002 04 06 0.8 1.0

0.0 02 04 06 08 1.0

0.0 02 04 0.6 0.8 1.0

Recall
(a) c = 1.01 (b) c=1.03 (©ec=1.05 d e=1.07 ) c=1.09
Adversary’s recall and precision for detecting vulnerable NodelS packages.
------- PRP: - - POP -~ P-ALPACA — PwoD —— PADME - -- - D-ALPACA
1.0 = Tk N, e N
_ ‘s 1 'q.." 1 \'.’ B "‘ T
A — - —1 . — — .
Ogt . b i ..'s' i ""\. | \‘s
0.6 | . F- . i e
T ] I | I I "\.
0.4 53 7 7 " N
0.2 n N
0.0 T LA I I B B L I B B I L L B B LA L R B B B

000204 06 08 1.0 0002040608 10

(a) c = 1.01

(b) ¢ =1.03

0002 04 06 0.8 1.0

Recall
(€) c = 1.05

0.0 02 04 06 08 1.0

(d) e =1.07

00 02 04 0.6 08 1.0

() c=1.09

Adversary’s recall and precision for detecting the Unsplash Lite Nature collection.
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Evaluation: Runtimes

-------- PRP,;;, ——- PRP, - - - - POP - P-ALPACA —— PwoD eomeee PRPypjy ——- PRP; - = - = POP emreme P-ALPAC A —— PwoD
40 2.5
= 35 no - P
i . w oA~an | e e
"g 30 L g 2.0 e
g 25 § 1.5 4+ S
Do e s o —— b e
E 15 5 Lo T
2 S 05 L 1
B 5 et — = - e B _——— =T -
0 _Wmmﬁﬂ P I A P el el e P E— () T, RN AN T FTrT PR eadsasmmshseses PR A N OO
1.01 1.02 1.03 1.04 1.05 1.06 1.07v 1.08 1.09 1.1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.1
C C

Runtimes on the Nodel]S dataset. Runtimes on the Unsplash Lite dataset.
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Algorithm: Padding For Sequences (PFS)

= Design: a linear program named Padding For Sequences (PFS)

" |nputs:
* § =the set of objects
+ S =the set of possible sequences
°* C = max padding factor per object

« k = an efficiency parameter (i.e., dimensionality reduction)

= Qutput:

* A memoryless padding scheme H that minimizes an upper bound on I (§;\?)
and does not violate C for any object

21



Competitors: Overview

= BDKB3 L [nputs required per algorithm.
o Target metric: I (S;Y)
Algorithm

= MVMD-D® s 5 £ ps=9 P(Si=n) p(*¢Z7))

e Target metric: ¢-diversity

Sets Distributions

BDK

MVMD-D
" PwoD PwoD

o Target metric: [ (S;Y) PFS

v v v
v

SNENENESN
‘K\

8. M. Backes, G. Doychev, and B. Kopf, "Preventing side channel leaks in web traffic: A formal approach," 20th ISOC Network and Distributed System Security Symposium, February 2013.
9.  W.M. Liu, L. Wang, P. Cheng, K. Ren, S. Zhu, and M. Debbabi, "PPTP: Privacy-preserving traffic padding in web-based applications," IEEE Transactions on Dependable and Secure Computing, Nov-Dec 2014. 22



Dataset: Autocomplete

f 1l lat
Ot _!.r E. ranslate
Target

Taylor Swift
American singer-songwriter
Tim Walz
899 f ” d Governor of Minnesota
| ull words
,
[ .

3870 total sequences  » transiate
traductor
Models a user typing a word

Trap
into the Google search bar and vanetateanglieh to spanieh
receiving suggested search
terms after each character is

":'\ tre Tres leches cake

typed. T |I=

treasurydirect
Trevor Bauer
American baseball pitcher

O, tree ¥ tree
 ’ Tree of heaven
Plant

tree of life
treehouse brewing

(==
o)

%)

=2/7/1B

= 318B

= 308B

= 286B

The Autocomplete sequence corresponding to the word “tree” is: (i, tr, tre, tree) = (271, 318, 308, 286)

Note: Screenshots taken Aug 8, 2024 and do not correspond to the sizes in the provided dataset. They are for illustrative purposes only.

23



Evaluation: Autocomplete - L.(S;Y

10
1.454 X PwoD (Ct.gt =2)
9 -
- BDK e
.. 110l $PFS (cigt =2)
/-\
g 7 1.351
SRS :
., 1.307
T 51 5 | 5| xPwoD (cig =1.5)
O 7] ®PFS (cig =1.5)
~ 1.20-
=3 3 I
. = H 1.151 MVMD-5 +
| 3 o W [ VMBS
1 1 .. . . \ l l 1.104 x PwoD (e =1.25)  MyMD-3*
nl I ) wl \ : ¢ PFS (Ctgt =125)
I 2 3 4 5 6 7 8 9 10 11 12 13 14 0 10 20 30 40
Sequence Length Cmax
Comparing all algorithms using I (§; ‘?) as the privacy metric. Padding overhead factors for each padding algorithm.
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Evaluation: Autocomplete - L.(S;Y

10
1.454 X PwoD (Ct.gt =2)
9 -
- BDK e
.. 110l $PFS (cigt =2)
/-\
z |- 1.351
SR :
., 1.307
T |5 5 | 5| xPwoD (cig =1.5)
o] 7] ®PFS (cig =1.5)
~ 1.20-
=5 |3 I
. = H 1.151 MVMD-5 +
| 3 o W [ VMBS
1 1 .. . . \ l l 1.104 x PwoD (e =1.25)  MyMD-3*
nl I ) wl \ : ¢ PFS (Ctgt =125)
I 2 3 4 5 6 7 8 9 10 11 12 13 14 0 10 20 30 40
Sequence Length Cmax
Comparing all algorithms using I (§; ‘?) as the privacy metric. Padding overhead factors for each padding algorithm.
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Evaluation: Autocomplete - L.(S;Y

1.454 X PwoD (Ct.gt =2)
{401 ®PFS (e =2) BDK e
1.351
1.30 1
%O
5 125 - x PwoD (Ctgt =15)
¢ PES (Ctgt =15)
1.201
1,15 MVMD-5 +
MVMD-4 +
1.10{ xPWoD (et =1.25)  MyMD-3*
: ¢ PFS (Ctgt =125)
S ‘ 0 10 20 30 40
Sequence Length Cmax
Comparing all algorithms using I (§; ‘?) as the privacy metric. Padding overhead factors for each padding algorithm.
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Evaluation: Autocomplete - L.(S;Y

1.454 X PwoD (Ct.gt =2)
{401 ®PFS (e =2) BDK e
1.351
1.301
5;-0
5 125 - x PwoD (Ctgt =15)
¢ PES (Ctgt =15)
1.201
1,151 MVMD-5 +
MVMD-4 +
1.10{ xPwoD (i =1.25)  MvMD-3*
: ¢ PFS (Ctgt =125)
S ‘ 0 10 20 30 40
Sequence Length Cmax

Comparing all algorithms using I (§; ‘?) as the privacy metric. Padding overhead factors for each padding algorithm.
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Evaluation: Autocomplete - L.(S;Y

1.454 X PwoD (Ct.gt =2)
{401 ®PFS (e =2) BDK e
1.351
1.30 1
%O
5 125 - x PwoD (Ctgt =15)
¢ PES (Ctgt =15)
1.201
1,15 MVMD-5 +
MVMD-4 +
1.10{ xPWoD (et =1.25)  MyMD-3*
: ¢ PFS (Ctgt =125)
S ‘ 0 10 20 30 40
Sequence Length Cmax
Comparing all algorithms using I (§; ‘?) as the privacy metric. Padding overhead factors for each padding algorithm.
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Evaluation: Autocomplete - I..(S;Y

10
9_
8_
~~
2 |7
- —
A [
s >
P S
o |4
N——
& 13- |
=
- :
Ul N\ Wl
N ] I IR
1 2 3 4 5 6 7 8§ 9 10 11 12 13 14

Sequence Length

Comparing all algorithms using I (§; ‘?) as the privacy metric.

0

1.454 xPwoD (cigr =2)

1.40 - ¢ PES (Ctgt =2) BDK e

1.351

1.30

| 5] *PwoD (cig =1.5)

. .PFS (Ctgt =15)

1.201

1.15 MVMD-5 +
MVMD-4 +

1.107 x PwoD (Ctgt =125) MVMD—3 +

¢ PES (cig =1.25)
0 10 20 0 m
Cmax

Padding overhead factors for each padding algorithm.




Evaluation: Autocomplete - I..(S;Y

10
1.454 X PwoD (Ctgt =2)
9 -
_ BDK e
.. {401 ®PFS (e =2)
g 7 1.35-
AN 1307
N
> |51 5| 25| xPwoD (cig =1.5)
T('f)'“ 4 - . ¢ PFS (Ctert =15)
Ju average | ©
= 1 pad factor
2 il 1.151 MVMD-5 +
i MVMD-4 +
I - : 1.104 x PWoD (e =1.25)  MvMD-3*
i ' @ PES (crg =1.25)
0 4 ' | | | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 0 10 20 30 40
Sequence Length ‘max | max pad factor

Comparing all algorithms using I (§; ‘?) as the privacy metric.

Padding overhead factors for each padding algorithm.
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Evaluation: Autocomplete - L.(S;Y

«
S o
10 % > g 2l
T m =& A 1.454 *xPwoD (cig =2)
9 1.05 BDK
1.25 1.40 .PFS (Ctgt =2) *
8 a e .
Ctgt 1.5 o
G 7 . 2.0 1 ’.;5 _
[ K
S
» 1.30 1
T |5 5| 25| xPwoD (cig =1.5)
T('j)" 4 4 : . ® PES (Ctgt =15)
Jun average
= P l pad factor
. = H 115 MVMD-5 +
i i . MVMD-4 +
1 vl . : 1.101 x PwoD (e =1.25)  MyvMD-3*
. i i i i i E' ﬂ| ¢ PFS (Ctgt =125)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 0 10 20 30 40
Sequence Length ‘max | max pad factor

Comparing all algorithms using I (§; ‘?) as the privacy metric.

Padding overhead factors for each padding algorithm.
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Evaluation: Autocomplete - L.(S;Y

10
1.45 - x PwoD (Ctgt =2)
9_
o BDK e
N | 401 ®PFS (cigt =2)
/-\
2 |- 1.35-
SN (R :
30
AN :
> |51 5| 25| xPwoD (cig =1.5)
N =71 #PFS (i =1.5)
Jn average , | '
= 1 l pad factor
. = H 1.151 MVMD-5 +
i* i . MVMD-4 +
] - 1.10{ xPwoD (¢ =1.25)  MmyMD-3*
l ! !  PFS (¢ =1.25)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 0 10 20 30 40
Sequence Length Cmax | max pad factor

Comparing all algorithms using I (§; ‘?) as the privacy metric.

Padding overhead factors for each padding algorithm.
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Evaluation: Autocomplete - L.(S;Y

10
9-
8_
—
2 77
L 6
! ‘5_
Pey
1 4 |
& 34 3 l
i P o
2 4 . . ::
I W
- | W Wl o [
0 I T BT B i
1 2 3 4 5 6 7 8 9 10 11 12 13 14
Sequence Length

Comparing all algorithms using I (§; ‘?) as the privacy metric.

[8)

Cav

0

1451 *PwoD (cig =2)
1204 ®PFS (cw=2) BDK @
1.35
1.30 7
1 251 xPwoD (cige =1.5)
. ¢ PES (ctg =1.5)
1.20 1
1.15 MVMD-5 +
MVMD-4 +

110‘ ‘PWOD (Ctgt =125) MVMD—3

PFS (Ctgt =125)

0 10 20 30 0
Cmax

Padding overhead factors for each padding algorithm.




Algorithm: Padding For Graphs (PFG)

= Motivation: #S increases exponentially as the sequence length grows
= Design: the same linear program used in PFS

" |nputs:
* § =the set of objects
* E =the “edges” between objects, i.e.,
E= {(s,s') J5e S,i e [len(s) — 1]: 5 = s A5y :s'}
°* C = max padding factor per object
* k = an efficiency parameter (i.e., dimensionality reduction)

= Insight:
* S is a subset of the walks in the graph =(S,E)

34



Evaluation: PFG vs. PFS - Runtime

104_

Runtime (seconds)

=)
[=]
1

—8— PFG (k=23) —— DPFS (k=3)
—®— PFG (k=2) —— PES (k=2)

[am—
o
[
1

<
1

=]
)
R | L

Runtime (seconds)
Runtime (seconds)
=

12
101
5 — —e
| T~
n

10"

2_ ]
4
—

| | | . | | 01 ; . ; ; ; | | | | . |
1.0 1.2 1.4 1.6 1.8 2.0 1.0 1.2 1.4 1.6 1.8 2.0 1.0 1.2 1.4 1.6 1.8 2.0
Ctat Ctat Crat
(a) Autocomplete (b) Linode (¢) Wikipedia

Model runtime for PFS and PFG as a function of c¢g.
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Evaluation: PFG vs. PFS - L. (5;\?)

10 13
9 12 74
11 -+
N H ~ 109
E 74 ’H =2 9 1
£ . 1 £ s
TN ) { — 71
> > - '
N 4- I A s E
S—— 4 N——
RSy 4
24 3]
2 -
1 1 | -
0 ! ! T T : : f 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6
Sequence Length Sequence Length
(a) Autocomplete (b) Wikipedia

Comparing PFG to PFS with & = 2.
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Algorithm: PFG-DE (Differential Evolution)

= Motivation: Design a PFG algorithm without using the LP framework

= Key Insight:
[ (S’,\?) < log, #Y
- 1 *
#1m <5 X (din )" +dou (0)")
yeY
" Goal: = Notation:
* Use DE to produce a H that minimizes #17(; * din =in-degree of a vertex

* dour= out-degree
* S¢=SUE=§, ;US| »
vertices + edges in the “padded graph’ Yo =3¢

% H. Taubig. The number of walks and degree powers in directed graphs. 2012. 38

° j.e., minimize the number of



Example S = Y

- a b ¢ d e f g
S = [100/105[109]|110[113]{114]|115

SG<

E ={(ab), (ac) (ad), (be) (cf), (dg)}

.

#S-=#S + #E
#Sc= 7 + 6 = 13

- a,b,e)
51...3{ a, ¢, )

a,d,g)

A~ A~ A~

For C = 1.05, four example |-] :

IVS—‘= 105| 105| 109| 115| 115| 115|115
IVE—‘ = {(105,105), (105,109), (105,115), (109,115), (115,115) }

#Y; =# S|+ #[E] . (105, 105, 115)
- Yl___g{(ms, 109, 115)
#Ys= 3 + 5 =8 (105, 115, 115)
ﬂﬂ: 105| 105| 114| 114| 114[ 114|115
(EW = {(105,105), (105,114), (114,114), (114,115) }
#Y = # + # E . (105, 105, 114)
7 (SW | | Y] 3{(105,114, 114)
#Yg= 3 + 4 =7 7L (105, 114, 115)
(S]= 100{ 109{ 109| 115[ 115| 115|115
(E]={(1oo,109), (100,115), (109,115), (115,115) }
#Y; =#[ S|+ #[E
_;G (SW #( ] v {(100,109,115)
#Y= 3 + 4 =17 1...3 (100, 115, 115)

(S—‘= 100] 11011101 110[{ 115/ 115(115
(EF {(100,110), (110,115) }
#YG =#| S|+ #| E]|

#V;= 3 + 2 =5

Y, 33 (100,

110, 115)
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Differential Evolution — General Framework

Pop={[CT_ T T T T T Jsoly, CT- T T T T T Isoly, ..., CT T T T T T Jsolup,, }
Loop:
for ie{l,....#Pop} :
LT T T T T Jsol
SOlmumm:| [ T T T T T 150lpes +MCX(| T T ] |S0lr2)

for each component, ((2) ~uU( [0, 1)) ...
less than CP , keep component from s0l,,anz

else keep component from sol;

, = Notation:
sol; = $0liyiq1 i fop; (S0lyiar) < fouj (s0L;) - Pop = population
S0l = solution vector

SOlpess is updated to be the current best solution * MC = mutation constant
* (P = crossover probability

. fobj = objective function 40



Differential Evolution — Our Key Design Choices

= sol Structure: Each sol is only a || for the “anchor sizes”

° e.g., for[100]105/109]110]113]114[115] and ¢ =1.05 the anchor sizes are {100, 109, 115}

* If sol; =[105, 110, 115] then the full |-|= [105]105{110]110]115[ 115|115
* If sol; =[100, 110, 115] then the full [-]= [100[110]110[110] 115[ 115|115
° If sol; =[100, 114, 115] then the full |-|= [100[8] 114] 114]114] 114] 115

= Exponential Crossover:

start at a random component

a1 ] [ag]

SOltrial — — o)
&
lag]] [

@aﬂ las]][as]|las] a)ﬂsoli

Preserves contiguous components in both sol; and Sol,,,zant

as | asllTas1ag]] [a sol
(@31 (@f)ﬂ (@31 251 [a7] mtant once a component in S0l; is selected,

all remaining components come from So/;

—
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Evaluation: Datasets

Statistic Linode Wikipedia Netflix
#S, ie., #S| 1,569 2.804 47.402
#E,ie.,#S| » 13,692 14,996 130,809

#S| 5 251,774 137,754  369.478
#S| 4 3.615,730 1,286,227 1,050,929
#S, s 43.443 467 12,373,371 3.003,036

Number of simple paths at each sequence length.
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PFG-DE vs. PFG-LP: I, and Runtime (Linode)

. —— PFG-DE —— PFG-DE
z | 8.960-
é 11.310 10.390
/‘Z:‘\ 8.950
> 11.300 10.3804
< 8.940-
L
7 11.290 10.3700 11
= I | - 8.930- \3_‘ X PFG-LP
= —— PFG-DE
11.280 | | | 10.360: | I 8.9201 . - -
0.0 2.5 5.0 7.5 10.0 0 5 10 15 0 2 4 6
Runtime (seconds) Runtime (seconds) Runtime (seconds)
c=1.05 c=1.1 c=1.25

Comparing the two algorithms on I (§G; \?G) :
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PFG-DE vs. PFG-LP: Memory Usage

N
n
(]

%) ) )
2 2130 220
) ©) O]
£ & &
& 2.25 = L1.25 & 1.8
~ ~ =
& 2.00] O 1.20| Qo
o L75 2 115 2
= i Z
~ ~ ~ 1.4
~ 1,50, o 1.10] 9
5 1.25 S 1.05l 2].2*
- -
g 100 3 3
gl : : : ‘ £ 1.00 . ‘ ; . £1.0 :
2 10 1.2 1.4 1.6 1.8 2.0 2 1o 1.2 1.4 1.6 1.8 2.0 2 1o 1.2 1.4 1.6 1.8 2.0
c c c
(a) Linode (b) Wikipedia (c) Netflix

Comparing the total memory usage of PFG-DE to PFG-LP.

=)
A dJ——————————————————
022Nl AT
= ~ T
= m |- -7
@] £
T 1.8 =
[ (]
216 5 4
g =}
& [
% 1.41 g N
P < | — PFG-DE
= PFG-LP
g 1. : \ . . 0 \ : ; .
5 1% 12 14 16 18 20 10 12 14 16 18 20
= Number of Videos Number of Videos
(a) Ratio (b) Usage

Comparing the total memory usage of PFG-DE to PFG-LP as Netflix videos are added.
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= Committee:

Pranay Jain

Michael K. Reiter, Advisor
Jay Aikat

Jasleen Kaur

Ketan Mayer-Patel
Fabian Monrose
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Summary

= Objective: Use padding to hide object sizes from a network observer

* Minimize Metrics: 1(S;Y), [.(S;Y), or }Im(§;\7)

* Constraints: (i) padding cannot exceed ( x for any object and (ii) object must be served in full
= Padding for Independent Object Retrievals

* Optimal algorithms for I(S;Y)—in both Per-Object and Per-Request settings — and for 1..(S;Y)

* Evaluated using two datasets: NodeJS packages and Unsplash Lite photos
= Padding for Dependent Object Retrievals

* Linear program named Padding for Sequences (PFS)

* Evaluated using three datasets: Linode documentation, Autocomplete results, and Wikipedia pages

= Efficiently Computing Padding for Dep. Obj. Retrievals w/ Differential Evolution

* Leveraged Differential Evolution to efficiently create H when S is large
* Evaluated using three datasets: Linode documentation, Wikipedia pages, and Netflix videos

Questions?
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Maximal Leakage
Min-Capacity

- [.(S;Y

Issa, et al.

We are now ready to present the definition of maximal
leakage. Since the adversary wishes to guess [/, we consider
the maximum advantage in the probability of guessing UV
from Y, as compared with guessing with no observations.
Maximal leakage captures the maximum advantage over all
['s as in the following definition.

Definition 1 (Maximal Leakage): Given a joint distribution
Pxy on alphabets A" and Y. the maximal leakage from X to Y
is defined as

Pr(U - (?-')
L(X=Y)= sup lo
{ : U—-X —I.'r ., glmax.“ eve Po(u)

where the supremum Mover all U and U taking values in the
same finite, but arbitrary, Wphabet.

Maximal Leakage = Min-Capacity = [ 3~

Alvim, et al.
Definition 2.1: Given prior 7w and channel C, the prior
vulnerability is given by

Vim) = max w[z],

and the posterior vuln ility is given by

or probability that .4 could guess the value of X correctly
in one try. To understand posterior vulnerability, note that

V(r,C) = ¥, max, p(z,y)
Y, ply) max. p(z|y) |
=3, PW)V(px)y)
ing it the (weighted) average of the vulnerabilities of
the posterior distributions p |, -

We convert from vulnerability to min-entropy by taking
the negative logarithm (to base 2):

Definition 2.2:

Hoo(m) = —log V{ﬂ)
Heo(m,C) = —log V(m,C).

Note that vulnerability is a probability, while min-entropy
is a measure of bits of uncertainty.

Next we define min-entropy leakage L(w,C) and min-
capacity ML(C):
Definition 2.3:
V(m,C)
V(r)

L(m,C) = Hy(n) — Hoo (7, C) = log
ML(C) = sup L(m, C).

vl

The min-entropy leakage L£(m,C) is the amount by which
channel C' decreases the uncertainty about the secret; equiv-
alently, it is the logarithm of the factor by which C increases
the vulnerability. The min-capacity ML(C') is the maximum
min-entropy leakage over all priors 7; it can be seen as the
worst-case leakage of C.

Finally, we recall [13] that the min-capacity of C' is easy

ulate, as it is simply the logarithm of the sum of the
column max -
Theorem 2.1: ML(C)'=log}  max; Clz,y], and it is

realized on a uniform prior 7.




POP Proposition

Proposition 1. Let f be a function that is defined on the interval R C R, and that has a negative second

derivative. For all 7,7 € R such that z < 7' and for any € > 0 such that z— € € R and 7/ + € € R:

fR+f(Z)>fz—e)+f(+e)

Proof. Since a negative second derivative implies a decreasing first derivative,

f(z)— f(z—¢g) - f(@+e€)—f(d)

z—(z—¢€) (7 +€)—7

and the result follows by rearranging terms. []
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Blahut-Arimoto

iy (v) exp(—p x D(s,y))

Vr—l—l(yas) — Zy! ut(yl) exp(—ﬁ % D(S,yl))
i (y) . —
_ ):yf;D(s?yf):() btr(yl) 1fD(S7y) =0 (34)
0 otherwise
Ltt+1()7) — Z]P(S — S)Vt—l—l (y,S)

seS

(3.4) holds since in our case, D(s,y) € {0,o} for all s, y.
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D-ALPaCA

D-ALPACA Cherubin, et al. [17] proposed padding algorithms to defend against website fingerprinting
attacks and, so, that seek to address leakage resulting from the retrieval of objects hyperlinked in a webpage,
subject to padding overhead constraints. Distilled down to our simpler scenario, though, their padding
algorithms result in natural contenders for comparison. One of these, called D-ALPACA, is deterministic and
so is suitable as a per-object padding algorithm. In brief, D-ALPACA sets [obj, ] to be the smallest multiple

),

where floor : R — N is the floor function and where sy, is the identifier of the smallest object in the object

of o that is > |obj;

, where o is an input parameter. For our setting, we set o = floor ((c—1) x |obj,

store. This, then, ensures that D-ALPACA does not violate ¢ for any s € S. Note that D-ALPACA is

insensitive to the distribution of S.
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P-ALPaCA

P-ALPACA Cherubin, et al. [17] also proposed a randomized algorithm called P-ALPACA that is suitable

as a per-request padding algorithm. When applied to our setting, P- ALPACA pads the response to a request

s so that
P([obj,] =) = P(|objs| =y | |obj| < |objs| < ¢ x |obj,])
_ ZS"I|ObjSl|:y]P)(S — S,)
Es":|objs|§|objs;|§c><|objs| P(S=+)
for each y, |obj,| <y < ¢ x |obj,|. In particular, the most probable padded size for obj, is the most probable

unpadded size in the interval [|obj,|,c X |obj]].
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Padme

Algorithm 1: PADME

Data: length of content L

, -
Result: length of padded content L
4.4 Padme E <+ U(ng LJ // L’s floating-point exponent
We now describe our padding scheme PADME, which S «— Uogg EJ +1 // # of bits to represent E
limits information leakage about the length of the plain- 2 F— 8 // # of low bits to set to 0
text for wide range of encrypted data sizes. Similarly

to the previous strawman, PADME also asymptotically

m++ (lkz)—1
leaks O(loglog M) bits of information, but its overhead

// mask of z 1’s in LSB

// round up using mask m to clear last z bits
is much lower (at most 12% and decreasing with L). I «— (L + m) & ~m
Intuition. In NEXTP2, any permissible padded length
L has the form L = 2™. We can therefore represent L as

a binary floating-point number with a |log, n| + 1-bit

ol L

. I Iy Iy n ) === Next power of 2

exponent and a mantissa of zero, i.e., no fractional bits. < 8of! i" i{ i‘,l i‘.l :‘.l nonon o
In PADME, we similarly represent a permissible % I‘,l it‘l i"\l i‘,l i‘.‘ i"‘ il‘, il‘, i‘.‘ i'l‘
padded length as a binary floating-point number, but E ‘;] E “,1 i ‘l‘ E \ E '\l i ltl i l\l E “\I i \ i '\l
we allow a non-zero mantissa at most as long as the ex- éﬁ 401 ‘tl i \ i ‘l‘ i ‘ml i ‘\l i ]\‘ i \ i “1 i ‘\‘ i '\‘
ponent (see Figure 6). This approach doubles the num- = 50l ]".E \li HIRY l',i l‘,i l'lli ‘1‘5 Y \
ber of bits used to represent an allowed padded length B T T Y Y L L L P
— hence doubling absolute leakage via length — but al- 0

10° 10* 10° 10°
lows for more fine-grained buckets, reducing overhead. original size L [B]
PADME asymptotically leaks the same number of bits as
NexTP2, differing only by a constant factor of 2, but
reduces space overhead by almost 10x (from +100% to
+12%). More importantly, the multiplicative expansion
overhead decreases with L (see Figure 7).

Fig. 7. Maximum multiplicative expansion overhead with respect
to the plaintext size L. The naive approach to pad to the next
power of two has a constant maximum overhead of 100%, whereas

PADME's maximum overhead decreases with L, following ﬁ.
2
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NodedS and Unsplash Lite datasets

NodeJS Packages To create our dataset of Node]S packages, we first referenced a list* of all packages

available on the NodeJS Package Manager (NPM) registry. We then used NPM’s Application Programming

Interface (API) to retrieve the weekly download statistics of each package, for the week of Feb. 13-19, 2021.

Finally, we sent HTTP HEAD requests for each package to obtain the tarball size (in bytes) of its most current
version (as of Feb. 19, 2021). Overall, this dataset contains the name, tarball size, and weekly download

statistics for 423,450 packages.’

Unsplash Lite To create our Unsplash Lite dataset, we first referenced Unsplash’s freely available “Unsplash
Lite Dataset 1.1.0” datasetS. This dataset includes the URL of each image in the dataset, as well each image’s
cumulative downloads since the image was uploaded to Unsplash. Given this information, we were able

to issue HTTP HEAD requests for each image in the dataset, as well as compute each image’s average

downloads per day (based on the difference between the dataset’s creation date and the image’s upload date).

In total, our Unsplash Lite dataset contains the URL, file size (in bytes), and average daily downloads for

24,997 images.

54



AUC: NodedS

AUC

1.0-
0.8-
0.6-
0.4
0.2+
0.0-

l

|

A

PwoD 'P-ALPACAD-ALPACA
(a)c=1.01

AUC

1.0-
0.8-
0.6-
0.4-

Zi:LLL i

PwoD 'P-ALPACAD- ALPACA
(b)c=1.03

1.0+
0.8

AUC

0.6-
0.4
0.2-

0.04

|
|
|
| ’ ‘ i
* I* IA IA ; ;
PRP POP PwoD P-ALPACAD-ALPACA PADME
(c)c=1.09
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AUC: Unsplash Lite

AUC

1.0+
0.8-
0.6-
0.4-
0.2-
0.0

AUC

" PwoD P-ALPACAD-ALPACA
(a)c=1.01

H 1.0-
0.8-
0.6-

0.4-
0.2

* ; ‘L 4 00

| - ‘ i
POP PwoD 'P-ALPACA'D-ALPACA PADME
(b) c=1.03
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Bandwidth Increase: NodedJdS

Bandwidth Multiplier
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PFS: Linear Program (1 of 2)

4.2.1 Linear program

Below, we denote the i-th element of a sequence y by ;, and the i-th element of a sequence taken

on by random variables Sand Y by §;- and ‘?g, respectively. For any ¥ and § of the same length, and any

i’ e [len(?)] = {1:“'1len(."_"))}’=

len

—

y)

P(?i =Y { S: = 5;) < ]P)(\?i’ =5 | Se = 57) (4.5)

—

[

since each probability is < 1. By summing (4.5) over /' € [len(¥)], we can conclude

len(y) ~ len(y) .
len(y) P(Yi=¥i|Si=5)< Y P(Yo=3|5=5) (4.6)

o len(¥) . .
L. (S;Y) —log, ¥ max [] P(Vi=7 |5 =%) (4.7)
= §e§ =1
yey i
1 len(y)

Sy =57) (4.8)

where (4.7) follows from (4.4) because our padding scheme is memoryless and (4.8) follows from (4.7) by

substituting (4.6).
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PFS: Linear Program (2 of 2)

minimize Z r subject to
yey
Z T = VseS
vey,
T >0 VseS.yeY,
m <1 VseS.yeY,
) 1 len(y)
> ) V5 eS.yev;
~ len(y) ,; N S




PFS: Dataset Notation

{0bjs}ses S = {511}

" seSe i€[len(s)]

(S for each i € [maxﬁ.egQ len(5)] we calculate I[D(_S‘]‘_J’ = 5 :) as

!

— - . B ):§,E§Q:§£ _g, count(s")
P(3, =5 (6o, ) T
ZE”Egg:len(f”)ziCount(s )

{ss |35€Sz€[len() 1]:5}25/\5’,-“:5’}
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PFS: Dataset - Autocomplete

Google Autocomplete dataset This dataset was created in January 2023 and models the distribution of
responses from Google search autocomplete suggestions. For a given search string, Google responds with a
list of autocomplete suggestions for each prefix of the string. To obtain these autocomplete responses, we
wrote a script that takes a list of words as input and queries the Google autocomplete API for each successive

prefix of each word. The dictionary of words was obtained from xkcd Simple Writer?, a dataset containing

the 1,000 most common English words. In this dataset, each s € S is a prefix of a word, and obj, is Google’s
autocomplete response for that prefix. Each (s,s') € E, then, represents two consecutive queries of word
prefixes in which s’ extends s by one character and in which s’ is a prefix of some word in the dataset. We
define S to contain each sequence 5 of prefixes of increasing length (i.e., §; is a word prefix of i characters)
such that §jen(7) is a word in the dataset. In total, after omitting plurals of words that are formed by simply
adding the letter ‘s’, for this dataset #52 — 899 words, #S = 3,870 word prefixes, and #E = 3,846 word prefix
extensions. Moreover, #5 = #S since each s € S is a prefix of a word and since Sis the prefix closure of s2.

In addition to S and E, the method of Backes, et al. [6] also requires the transition probabilities between
word prefixes, i.e., an actual value for P(§i+1 =, } §,- = s) for each (s,5") € E. We model this using the
technique they proposed, which uses the number of search results returned by Google for a given word Sjeps)

as the value for count(), and then P(§i+] = } S, = 5) is estimated as
23"659:51;1 —/AS!=s count(s")

4.22
Lsegass,—, count(s) 422

P(§i+1 = S'r } gi = S) =
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PFS: Dataset - Wikipedia

Wikipedia dataset This dataset was created in June 2023 and models pages retrieved during web surfing. It
was created by selecting s= https://en.wikipedia.org/wiki/Cat to obtain the HTML of the web page
as obj,. We then selected the first 50 hyperlinks (to articles) on this page and included those in S, retrieving
the HTML of the web page for each. We repeated this step once more for these added pages, but increased the
number of hyperlinks that we added from those pages to the first 100. We increased from 50 to 100 hyperlinks
to help increase the reach of this dataset, as we observed that the articles had many common hyperlinks.

This initial step yielded a set of #5 = 2,804 articles. To then create the set of sequences 52, for each
s € S, we generated two random walks of length six that both begin at s as the start vertex. This resulted in
#59 = 5,606 unique sequences of webpages that a user might explore while browsing among the articles
included in S with an associated #£ = 10,182 hyperlinks. Taking the prefix closure of these sequences then
yielded #5 = 32,683.

For this dataset, we used the Wikipedia Page Views API to instantiate count(s) for each 5 ¢ §2. To do

so, we retrieved the total number of page views for each s € S for January 2016, which we denote as pv(s).

For each 5 € 5 we then set cou nt(5) equal to its average page views, i.e.,

LI ()

count(s) len(®) (4.23)

Finally, we instantiated P(§f+1 =y } S = s) for each (s,5') € E as

B 1
5) = #5: (s.§) €E}

—

P(Sip1 =5 |Si= (4.24)

We reiterate that this dataset only captures the size of each article’s HTML file. We address this limitation
with our next dataset, though we stress that our goal for all of our datasets is to enable a meaningful
comparison of candidate padding algorithms (described below) based on the privacy they achieve and padding
overhead they induce. Our goal is not to make specific claims about privacy in the context of Wikipedia

retrievals, for example.
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PFS: Dataset - Linode

Linode dataset As with the Wikipedia dataset, this dataset models pages retrieved during web surfing where
S represents webpages and E represents hyperlinks between webpages. It was created by crawling the Linode
documentation website® in April 2020. A difference from the Wikipedia dataset, though, is that in the Linode
dataset |obj,| represents the total sum of data for the given page’s HTML file and all the hyperlinked objects
that would be retrieved automatically (images, scripts, etc.).

Another difference between our Wikipedia and Linode datasets is the way in which we generated maximal
length sequences. Let spome = https://www.linode.com/docs. Then, for each s € S\ {shome } We include
in S all shortest paths from spome to s. In other words, 5 € S iff: (i) 5] = Spome. (ii) Sien(s) 7 Shome. and (iii) &
is a shortest path. This dataset therefore models a user that begins at the Linode documentation homepage
and then navigates to a destination page by clicking as few links as possible. The dataset contains #S = 1,569
webpages, #S = 2,095 unique sequences of webpages, and #E = 2,029 links between webpages. Since the
sequences in this dataset are all shortest paths, taking the prefix closure of 5 only yields one additional
sequence: the sequence of length one that consists of shome.

As this dataset does not have an accompanying Page Views API, for each 5 € §2 we set count(s) =1

and we instantiated P(S; ;| = ' | S; = s) for each (s,s') € E as

|

T #{5: (5.9) €E} (4.25)

]P)(gH_] = S" } g,‘ = S)
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BDK (Backes, et al.)

BDK Backes, et al. [6] propose an algorithm to create a deterministic (i.e., per-object) padding scheme [-]

such that, for any padded sizes y,y’ € Y and any s, s" € S such that [obj ] = [ob]j.] =y,

Y PG =5|5=5)=Y P(Sir1 =5
[OIL;J%S‘:J’I (ogjegls¥}-’

—

Si=5') (4.26)

In other words, for any two objects obj, and obj, that pad to size y, it must be equally likely for each that
its retrieval will be followed by a retrieval padded to size y'. In the remainder of this paper, we refer to the
Backes, et al. algorithm as “BDK”.

BDK assumes that the generation of object retrieval sequences can be modeled as a Markov chain (i.e.,
that the distribution over the next object retrieved depends only on the previous). Subject to this assumption,
it efficiently calculates entropy ]H[(?) for any arbitrary sequence length. It therefore works by randomly
producing many candidate per-object padding schemes [-] and then selecting the scheme [-] that produces
the lowest ]HI(‘?) for a target average padding overhead. H(‘?) then, serves as an upper-bound for H(g; \7) \

1.e., the mutual information between § and \7
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MVMD-D (Liu, et al.)

For both settings, Liu, et al. present greedy algorithms that attempt to create per-object padding schemes
[-] that ensure either k-anonymity or ¢-diversity, and that also attempt to minimize the sum of padding
overhead applied to objects. We refer to these algorithms as MVMD and MVMD-D, respectively, and
when parameterizing MVMD-D with a target ¢, we refer to the algorithm as MVMD-/. So, for example,
when parameterized with a target £ = 3, we refer to the algorithm as MVMD-3. Roughly, the MVMD and
MVMD-D algorithms iterate through each i € [max,_glen(s)] and—for each §' C S where for every 5 € §
it is the case that 57, is padded to the same ¥ _;_;—construct [-] so that §;’ = Us.eg,{ff} is split into two
subsets that remain either k-anonymous or #-diverse, and that do so with minimal total overhead. Since the
algorithms are greedy, they are not guaranteed to create the padding scheme [-] that minimizes the padding
overhead for a given k or ¢. Furthermore, there are instances where k-anonymity or ¢-diversity cannot be
achieved, either due to their algorithms making a greedy choice at i that prevents upholding & or £ at i’ > i, or
simply because the distribution §1 i 1s not distributed in a way that supports the chosen metric. In such cases,

these algorithms will construct [-] so thatall s € §,’ (which cannot be split further) will be padded to the same

y.
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Evaluation: PFS vs BDK - I(S:Y
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Figure 4.2: Comparing PFS to BDK using I (§; \7) as the privacy meftric.
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Evaluation: PFS vs MVMD-3 - /-diversity
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Evaluation: Linode - I.(S:Y
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Evaluation: Wikipedia - 1. (é‘;\?)
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PFS: Precision-Recall (Autocomplete)
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Adversary’s recall and precision for detecting words from the Autocomplete dataset.
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PFS: Precision-Recall (Linode)
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Adversary’s recall and precision for detecting sequences of length 3 from the Linode dataset.
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PFS: Precision-Recall (Wikipedia)
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Adversary’s recall and precision for detecting sequences of length 7 from the Wikipedia dataset.
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Example S =) Y,
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PFG-DE: ACC(X)

We create a set of acceptable padded sizes, ACC(X), according to the following construction:

ACC(X) = {x e X : #A({¥' € X : ¥’ <x})
+#A({x" e X 1 x <x"})

= #A(X)} (5.2)

Here, the set X and the function A take on the same meaning as they did in Chap. 4.2.2: X represents

the set of all unpadded sizes and A returns the set of anchor sizes for a given set of integers.

Now, note that for a given X and ¢, #4(X) represents the minimum number of padded values possible
in any resultant padding scheme [-].? Furthermore, note that in any padding scheme [-] that produces
as few padded sizes as possible, it will be the case that the unpadded size of the largest object will be

selected as one of the padded sizes produced by [-] (due to (1.2)).

The function ACC, then, iterates through each x € X and runs the function A on (i) the subset of X that
is no larger than x and on (ii) the subset of X that is strictly larger than x. If the sizes of these two
resultant sets together equal #A (X), then x can be used as a padded size in at least one minimal [-],
and so x is selected as an element of ACC(X). Conversely, if a size x is not selected as an element in
ACC(X), then that indicates that if x were chosen as a padding size (i.e., as a y € Y), then it would be

the case that #Y > #A(X ), and so we exclude these from consideration.
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PFG-DE: Mutation Strategy

* The mutation strategy was set to “randtobest]1”. As mentioned in Chap. 5.2, this strategy creates each

SOlyutant according to:

SOlmutant — SOlI”] +MC X (SOlbest — SOlr] ‘|‘SOlr2 — SOlr3)
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PFG-DE: Datasets

* Linode and Wikipedia. For our Linode and Wikipedia datasets, S remains the same as in Chap. 4. E,
however, is instead comprised of every hyperlink captured during our crawls of each website. This
is in contrast to the approach we took in Chap. 4, where we first created the set of maximal length

sequences S€ and then constructed E from only the subset of hyperlinks present in at least one § & 52,

« Netflix. For our Netflix dataset, we leverage a database of Dynamic Adaptive Streaming over HTTP
(DASH) videos from Reed and Kranch [67]. Reed and Kranch [67] crawled Netflix and extracted
“fingerprints” for each video consisting of the size (in bytes) for each segment of each video at each

available video bitrate. When this dataset was created, each segment in a Netflix video corresponded to

four seconds of video.

In this dataset that we create from these fingerprints, each s, € S is a video segment which corresponds
to a given bitrate encoding, b, at a timestamp in a video, 7. Then, for each Sht € S such that b —1 is the
next lower bitrate, b4 1 is the next higher bitrate, and # 4 1 is the next timestamp of the video, we add

the following edges to E: (5p¢.55¢+1)s (Sbz:55—14+1), and (Sp ¢, 8p414+1)-




PFG-DE: Datasets — Netflix example

Movie = “National Treasure”

iIncreasing
quality levels

A

560 kbps

375 kbps

4 sec
of video

4 sec
of video

4 sec
of video

4 sec
of video

B = Byte
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PFG-DE vs. PFG-LP: I, and Runtime (Linode)
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Comparing the two algorithms on sequences of length 5.
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PFG-DE vs. PFG-LP: I, and Runtime (Linode)
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Comparing the two algorithms on sequences of length 5.
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PFG-DE vs. PFG-LP: I, and Runtime (Wikipedia)
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Comparing the two algorithms on sequences of length 5.
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PFG-DE vs. PFG-LP: I, and Runtime (Wikipedia)
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PFG-DE vs. PFG-LP: [, and Runtime (Netflix)
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Comparing the two algorithms on sequences of length 5.
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PFG-DE vs. PFG-LP: [, and Runtime (Netflix)
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83



	Hiding Object Sizes with Constrained Padding�in Multiple Settings
	Agenda
	Agenda
	Objective: High Level – Independent Retrievals
	Objective: High Level – Dependent Retrievals
	Objective: High Level
	Objective: Our Approach
	Objective: Our Chosen Metrics
	Agenda
	              : Per-Object Padding (POP)
	              : Per-Request Padding (PRP)
	              : Padding without a Distribution (PwoD)
	Example Padding Schemes
	Competitors
	Evaluation:              and
	Evaluation:              and
	Evaluation:              and
	Evaluation: Recall & Precision
	Evaluation: Runtimes
	Agenda
	Algorithm: Padding For Sequences (PFS)
	Competitors: Overview
	Dataset: Autocomplete
	Evaluation: Autocomplete - 
	Slide Number 25
	Evaluation: Autocomplete - 
	Evaluation: Autocomplete - 
	Evaluation: Autocomplete - 
	Evaluation: Autocomplete - 
	Evaluation: Autocomplete - 
	Evaluation: Autocomplete - 
	Evaluation: Autocomplete - 
	Evaluation: Autocomplete - 
	Algorithm: Padding For Graphs (PFG)
	Evaluation: PFG vs. PFS - Runtime
	Evaluation: PFG vs. PFS -
	Agenda
	Algorithm: PFG-DE (Differential Evolution)
	Example
	Differential Evolution – General Framework
	Differential Evolution – Our Key Design Choices
	Evaluation: Datasets
	PFG-DE vs. PFG-LP:      and Runtime (Linode)
	PFG-DE vs. PFG-LP: Memory Usage
	Thank You!
	Questions?
	Back-up Slides
	Maximal Leakage�Min-Capacity
	POP Proposition
	Blahut-Arimoto
	D-ALPaCA
	P-ALPaCA
	Padmé
	NodeJS and Unsplash Lite datasets
	AUC: NodeJS
	AUC: Unsplash Lite
	Bandwidth Increase: NodeJS
	PFS: Linear Program (1 of 2)
	PFS: Linear Program (2 of 2)
	PFS: Dataset Notation
	PFS: Dataset - Autocomplete
	PFS: Dataset - Wikipedia
	PFS: Dataset - Linode
	BDK (Backes, et al.)
	MVMD-D (Liu, et al.)
	Evaluation: PFS vs BDK - 
	Evaluation: PFS vs MVMD-3 - 
	Evaluation: Linode - 
	Evaluation: Wikipedia - 
	PFS: Precision-Recall (Autocomplete)
	PFS: Precision-Recall (Linode)
	PFS: Precision-Recall (Wikipedia)
	Example
	PFG-DE: ACC(X)
	PFG-DE: Mutation Strategy
	PFG-DE: Datasets
	PFG-DE: Datasets – Netflix example
	PFG-DE vs. PFG-LP:      and Runtime (Linode)
	PFG-DE vs. PFG-LP:      and Runtime (Linode)
	PFG-DE vs. PFG-LP:      and Runtime (Wikipedia)
	PFG-DE vs. PFG-LP:      and Runtime (Wikipedia)
	PFG-DE vs. PFG-LP:      and Runtime (Netflix)
	PFG-DE vs. PFG-LP:      and Runtime (Netflix)

