
1

Hiding Object Sizes with Constrained Padding
in Multiple Settings

Andrew C. Reed
PhD Defense

Computer Science
UNC-Chapel Hill

March 5, 2025

Committee
Michael K. Reiter, Advisor
Jay Aikat
Jasleen Kaur
Ketan Mayer-Patel
Fabian Monrose

2

Agenda

 Objective
 Padding for Independent Object Retrievals
 Padding for Dependent Object Retrievals
 Efficiently Computing Padding for Dependent

Object Retrievals using Differential Evolution
 Questions

3

Agenda

 Objective
 Padding for Independent Object Retrievals
 Padding for Dependent Object Retrievals
 Efficiently Computing Padding for Dependent

Object Retrievals using Differential Evolution
 Questions

4

Objective: High Level – Independent Retrievals

Trusted
Object Store

Network Observer

Client

• Client has retrieved an object from Trusted Object Store
• Network Observer’s goal is to identify which object was requested

Object Sizes
Obj A = 2 KB
Obj B = 2 KB
Obj C = 1 KB
Obj D = 3 KB

1 KB
Object

5

Objective: High Level – Dependent Retrievals

Trusted
Object Store

Network Observer

Client
2 KB

Object

• Client has retrieved a sequence of objects from Trusted Object Store
• Network Observer’s goal is to identify which objects were requested

Object Sizes
Obj A = 2 KB
Obj B = 2 KB
Obj C = 1 KB
Obj D = 3 KB

3 KB
Object

1st object2nd object

A C

B D

Possible Sequences

Trusted
Object Store

Object Sizes
Obj A = 2 KB
Obj B = 2 KB
Obj C = 1 KB
Obj D = 3 KB

A C

B D

Possible Sequences

6

Objective: High Level

 Threat: A network observer with the following…
• Capability: discern the sizes of retrieved objects
• Goal: identify which object(s) was/were retrieved
• Knows:
every object’s size and how often retrieved
all possible sequences and how often retrieved (for the Dependent setting)
 the padding defense used by the object store

 Trusted Object Store’s Goal: Compute a padding scheme that…
1. Uses padding to best thwart the adversary
2. Controls the per-object overhead due to padding

Note: The object store is only
willing to pad objects, i.e., it will
not insert decoy objects.

7

Objective: Our Approach

 Objective: Minimize…
• Independent Retrievals: and

• Dependent Retrievals:

 Constraints: For a given max pad factor :
• No object is padded by more than a factor of
• Each object is served in full

Note: it’s possible for some objects to remain isolated in our setting

1. M. Alvim, K. Chatzikokolakis, C. Palamidessi, and G. Smith, “Measuring information leakage using generalized gain functions,” 25th IEEE Computer Security Foundations, Jun. 2012.
2. I. Issa, A. B. Wagner, and S. Kamath, “An operational approach to information leakage,” IEEE Transactions on Information Theory, vol. 66, no. 3, Mar. 2020.

 Notation:
• = mutual information
• = Sibson mutual information of order infinity,

also referred to as min-capacity1 and maximal
leakage2

• S = random variable for an object’s identity
• Y = random variable for an object’s padded size
• denotes a sequence

8

Objective: Our Chosen Metrics

1. M. Alvim, K. Chatzikokolakis, C. Palamidessi, and G. Smith, “Measuring information leakage using generalized gain functions,” 25th IEEE Computer Security Foundations, Jun. 2012.
2. I. Issa, A. B. Wagner, and S. Kamath, “An operational approach to information leakage,” IEEE Transactions on Information Theory, vol. 66, no. 3, Mar. 2020.

 Mutual Information
•

• Since is constant, minimizing thereby maximizes .

•

 Sibson Mutual Information of Order Infinity
• [1] and [2] advocate for this metric because:
 ≤ over all distributions of .

 upper-bounds an adversary’s multiplicative gain in correctly guessing
any function of after observing , over all distributions of .

 Notation:
• = entropy
• = guessing entropy

9

Agenda

 Objective
 Padding for Independent Object Retrievals
 Padding for Dependent Object Retrievals
 Efficiently Computing Padding for Dependent

Object Retrievals using Differential Evolution
 Questions

10

: Per-Object Padding (POP)
 Setting:

• Each object is padded only once

 Key Insights:
•
Sufficient to minimize

• Optimal will be a partition of contiguous blocks
 e.g., for c = 1.05 and original object sizes:
 Optimal will not be of the form:
 Optimal will be of the form:

 Solution:
• Dynamic programming algorithm that runs in

100 105 109 110 113 114 115
105 105 114 115 115 114 115
105 105 114 114 114 114 115

0

11

: Per-Request Padding (PRP)

 Setting:
• Objects are padded anew with each request

 Key Insight:
• Special case of rate-distortion minimization3

 Solution:
• Use the iterative algorithm “Blahut-Arimoto”4,5 with:
D(s,y) = 0 If s can be padded to y
D(s,y) = ∞ If s cannot be padded to y

3. C. E. Shannon, “Coding theorems for a discrete source with a fidelity criterion,” in Institute of Radio Engineers, International Convention Record, vol. 7, 1959.
4. R. Blahut, “Computation of channel capacity and rate-distortion functions,” IEEE Transactions on Information Theory, vol. 18, no. 4, Jul. 1972.
5. S. Arimoto, “An algorithm for computing the capacity of arbitrary discrete memoryless channels,” IEEE Transactions on Information Theory, vol. 18, no. 1, Jan. 1972.

12

: Padding without a Distribution (PwoD)
 Calculation:

•

• only requires that the object store know which
objects have a nonzero probability of being retrieved

 Solution:
• A greedy algorithm that runs in time linear in
 e.g., for c = 1.05 and original object sizes:

 PwoD runs from right-to-left assigning objects
 to padding groups as follows:

100 105 109 110 113 114 115

100 109 109 115 115 115 115

100 105 109 110 113 114 115

13

Example Padding Schemes

POP PRP PwoD

c = 2

Inputs:

&

Outputs:

14

Competitors

D-ALPaCA6 P-ALPaCA6 Padmé7

c = 2

Inputs:

&

Outputs:

6. G. Cherubin, J. Hayes, and M. Juarez, “Website fingerprinting defenses at the application layer,” Proceedings on Privacy Enhancing Technologies, vol. 2017, no. 2, 2017.
7. K. Nikitin, L. Barman, W. Lueks, M. Underwood, J.-P. Hubaux, and B. Ford, “Reducing metadata leakage from encrypted files and communication with PURBs,” Proceedings on Privacy

Enhancing Technologies, vol. 2019, no. 4, 2019.

15

Evaluation: and

16

Evaluation: and

I(S;Y)

17

Evaluation: and

I∞(S;Y)

18

Evaluation: Recall & Precision

19

Evaluation: Runtimes

20

Agenda

 Objective
 Padding for Independent Object Retrievals
 Padding for Dependent Object Retrievals
 Efficiently Computing Padding for Dependent

Object Retrievals using Differential Evolution
 Questions

21

Algorithm: Padding For Sequences (PFS)

 Design: a linear program named Padding For Sequences (PFS)

 Inputs:
• = the set of objects
• = the set of possible sequences
• = max padding factor per object
• = an efficiency parameter (i.e., dimensionality reduction)

 Output:
• A memoryless padding scheme that minimizes an upper bound on

and does not violate for any object

22

Competitors: Overview

8. M. Backes, G. Doychev, and B. Kopf, "Preventing side channel leaks in web traffic: A formal approach," 20th ISOC Network and Distributed System Security Symposium, February 2013.
9. W. M. Liu, L. Wang, P. Cheng, K. Ren, S. Zhu, and M. Debbabi, "PPTP: Privacy-preserving traffic padding in web-based applications," IEEE Transactions on Dependable and Secure Computing, Nov-Dec 2014.

 BDK8

• Target metric:

 MVMD-D9

• Target metric:

 PwoD
• Target metric:

BDK
MVMD-D

PwoD
PFS

23

Dataset: Autocomplete

= 271B

= 318B

= 308B

= 286B

The Autocomplete sequence corresponding to the word “tree” is: (t, tr, tre, tree) = (271, 318, 308, 286)
Note: Screenshots taken Aug 8, 2024 and do not correspond to the sizes in the provided dataset. They are for illustrative purposes only.

t

tr

tre

tree

 899 full words

 3870 total sequences

 Models a user typing a word
into the Google search bar and
receiving suggested search
terms after each character is
typed.

24

Evaluation: Autocomplete -

25

Evaluation: Autocomplete -

26

Evaluation: Autocomplete -

27

Evaluation: Autocomplete -

28

Evaluation: Autocomplete -

29

Evaluation: Autocomplete -

30

max pad factor

average
pad factor

Evaluation: Autocomplete -

31

max pad factor

average
pad factor

Evaluation: Autocomplete -

32

max pad factor

average
pad factor

Evaluation: Autocomplete -

33

Evaluation: Autocomplete -

34

Algorithm: Padding For Graphs (PFG)

 Motivation: increases exponentially as the sequence length grows
 Design: the same linear program used in PFS
 Inputs:

• = the set of objects
• = the “edges” between objects, i.e.,

• = max padding factor per object
• = an efficiency parameter (i.e., dimensionality reduction)

 Insight:
• is a subset of the walks in the graph = (,)

35

Evaluation: PFG vs. PFS - Runtime

36

Evaluation: PFG vs. PFS -

37

Agenda

 Objective
 Padding for Independent Object Retrievals
 Padding for Dependent Object Retrievals
 Efficiently Computing Padding for Dependent

Object Retrievals using Differential Evolution
 Questions

38

Algorithm: PFG-DE (Differential Evolution)

 Motivation: Design a PFG algorithm without using the LP framework
 Key Insight:

 Goal:
• Use DE to produce a that minimizes
• i.e., minimize the number of
 vertices + edges in the “padded graph”

 Notation:
• = in-degree of a vertex
• = out-degree
• = =
• =

*

H. Täubig. The number of walks and degree powers in directed graphs. 2012.*

39

Example

100 105 109 110 113 114 115
a b c d e f g

For = 1.05, four example :

= { (a,b), (a,c), (a,d), (b,e), (c,f), (d,g) }

a

b

c

d

e

f

g

=

105 105 109 115 115 115 115

105 105 114 114 114 114 115

100 110 110 110 115 115 115

= 3 + 5 = 8

{ (105,105), (105,109), (105,115), (109,115), (115,115) }

{ (105,105), (105,114), (114,114), (114,115) }

{ (100,110), (110,115) }

{ (100,109), (100,115), (109,115), (115,115) }

100 109 109 115 115 115 115

(105, 105, 115)
(105, 109, 115)
(105, 115, 115)

(a, b, e)
(a, c, f)
(a, d, g)

(105, 105, 114)
(105, 114, 114)
(105, 114, 115)

(100, 109, 115)
(100, 115, 115)

(100, 110, 115)

=
=

=
=

=
=

=
=

= +

= 3 + 4 = 7

= +

= 3 + 4 = 7

= +

= 3 + 2 = 5

= +

= +

= 7 + 6 = 13

40

 Notation:
• = population
• = solution vector
• = mutation constant
• = crossover probability
• = objective function

Differential Evolution – General Framework
= { , , … , }

Loop:
 for :

+ -()

less than , keep component from

else keep component from

for each component, ~ U([0, 1)) …

is updated to be the current best solution

41

Differential Evolution – Our Key Design Choices

 Structure: Each is only a for the “anchor sizes”
• e.g., for and =1.05 the anchor sizes are {100, 109, 115}
• If = [105, 110, 115] then the full =
• If = [100, 110, 115] then the full =
• If = [100, 114, 115] then the full =

 Exponential Crossover:

100 105 109 110 113 114 115

100 105 114 114 114 114 115

100 110 110 110 115 115 115

105 105 110 110 115 115 115

start at a random component

once a component in is selected,
all remaining components come from

Preserves contiguous components in both and

42

Evaluation: Datasets

43

PFG-DE vs. PFG-LP: and Runtime (Linode)

44

PFG-DE vs. PFG-LP: Memory Usage

45

Thank You!

 Collaborator: Pranay Jain

 Committee: Michael K. Reiter, Advisor
 Jay Aikat
 Jasleen Kaur
 Ketan Mayer-Patel
 Fabian Monrose

46Questions?

Summary
 Objective: Use padding to hide object sizes from a network observer

• Minimize Metrics: , , or
• Constraints: (i) padding cannot exceed x for any object and (ii) object must be served in full

 Padding for Independent Object Retrievals
• Optimal algorithms for – in both Per-Object and Per-Request settings – and for
• Evaluated using two datasets: NodeJS packages and Unsplash Lite photos

 Padding for Dependent Object Retrievals
• Linear program named Padding for Sequences (PFS)
• Evaluated using three datasets: Linode documentation, Autocomplete results, and Wikipedia pages

 Efficiently Computing Padding for Dep. Obj. Retrievals w/ Differential Evolution
• Leveraged Differential Evolution to efficiently create when is large
• Evaluated using three datasets: Linode documentation, Wikipedia pages, and Netflix videos

47

Back-up Slides

Issa, et al.

Alvim, et al.

Maximal Leakage = Min-Capacity = I∞

Maximal Leakage
Min-Capacity

49

POP Proposition

50

Blahut-Arimoto

51

D-ALPaCA

52

P-ALPaCA

53

Padmé

54

NodeJS and Unsplash Lite datasets

55

AUC: NodeJS

56

AUC: Unsplash Lite

57

Bandwidth Increase: NodeJS

58

PFS: Linear Program (1 of 2)

59

PFS: Linear Program (2 of 2)

60

PFS: Dataset Notation

61

PFS: Dataset - Autocomplete

62

PFS: Dataset - Wikipedia

63

PFS: Dataset - Linode

64

BDK (Backes, et al.)

65

MVMD-D (Liu, et al.)

66

Evaluation: PFS vs BDK -

67

Evaluation: PFS vs MVMD-3 -

68

Evaluation: Linode -

69

Evaluation: Wikipedia -

70

PFS: Precision-Recall (Autocomplete)

71

PFS: Precision-Recall (Linode)

72

PFS: Precision-Recall (Wikipedia)

73

Example

100 105 109 110 113 114 115
a b c d e f g

For = 1.05, four example :

= { (a,b), (a,c), (a,d), (b,e), (c,f), (d,g) }

a

b

c

d

e

f

g

=
105

109

115

105 105 109 115 115 115 115

105 105 114 114 114 114 115

100 110 110 110 115 115 115

105 114 115

100 110 115

100

105

109

110

113

114

115

= 8

= 7

= 5

{ (105,105), (105,109), (105,115), (109,115), (115,115) }

{ (105,105), (105,114), (114,114), (114,115) }

{ (100,110), (110,115) }

100 109 115

= 7
{ (100,109), (100,115), (109,115), (115,115) }

100 109 109 115 115 115 115

(105, 105, 115)
(105, 109, 115)
(105, 115, 115)

(a, b, e)
(a, c, f)
(a, d, g)

(105, 105, 114)
(105, 114, 114)
(105, 114, 115)

(100, 109, 115)
(100, 115, 115)

(100, 110, 115)

74

PFG-DE: ACC(X)

75

PFG-DE: Mutation Strategy

76

PFG-DE: Datasets

77

PFG-DE: Datasets – Netflix example

13294 23459 25360 21251

14263 29231 31235 25767

54038 86139 77332 67319 …

…

…

Movie = “National Treasure”

235 kbps

375 kbps

560 kbps

4 sec
of video

4 sec
of video

4 sec
of video

4 sec
of video

increasing
quality levels

B

B

B

B

B

B

B

B

B

B

B

B

B = Byte

78

PFG-DE vs. PFG-LP: and Runtime (Linode)

79

PFG-DE vs. PFG-LP: and Runtime (Linode)

80

PFG-DE vs. PFG-LP: and Runtime (Wikipedia)

81

PFG-DE vs. PFG-LP: and Runtime (Wikipedia)

82

PFG-DE vs. PFG-LP: and Runtime (Netflix)

83

PFG-DE vs. PFG-LP: and Runtime (Netflix)

	Hiding Object Sizes with Constrained Padding�in Multiple Settings
	Agenda
	Agenda
	Objective: High Level – Independent Retrievals
	Objective: High Level – Dependent Retrievals
	Objective: High Level
	Objective: Our Approach
	Objective: Our Chosen Metrics
	Agenda
	 : Per-Object Padding (POP)
	 : Per-Request Padding (PRP)
	 : Padding without a Distribution (PwoD)
	Example Padding Schemes
	Competitors
	Evaluation: and
	Evaluation: and
	Evaluation: and
	Evaluation: Recall & Precision
	Evaluation: Runtimes
	Agenda
	Algorithm: Padding For Sequences (PFS)
	Competitors: Overview
	Dataset: Autocomplete
	Evaluation: Autocomplete -
	Slide Number 25
	Evaluation: Autocomplete -
	Evaluation: Autocomplete -
	Evaluation: Autocomplete -
	Evaluation: Autocomplete -
	Evaluation: Autocomplete -
	Evaluation: Autocomplete -
	Evaluation: Autocomplete -
	Evaluation: Autocomplete -
	Algorithm: Padding For Graphs (PFG)
	Evaluation: PFG vs. PFS - Runtime
	Evaluation: PFG vs. PFS -
	Agenda
	Algorithm: PFG-DE (Differential Evolution)
	Example
	Differential Evolution – General Framework
	Differential Evolution – Our Key Design Choices
	Evaluation: Datasets
	PFG-DE vs. PFG-LP: and Runtime (Linode)
	PFG-DE vs. PFG-LP: Memory Usage
	Thank You!
	Questions?
	Back-up Slides
	Maximal Leakage�Min-Capacity
	POP Proposition
	Blahut-Arimoto
	D-ALPaCA
	P-ALPaCA
	Padmé
	NodeJS and Unsplash Lite datasets
	AUC: NodeJS
	AUC: Unsplash Lite
	Bandwidth Increase: NodeJS
	PFS: Linear Program (1 of 2)
	PFS: Linear Program (2 of 2)
	PFS: Dataset Notation
	PFS: Dataset - Autocomplete
	PFS: Dataset - Wikipedia
	PFS: Dataset - Linode
	BDK (Backes, et al.)
	MVMD-D (Liu, et al.)
	Evaluation: PFS vs BDK -
	Evaluation: PFS vs MVMD-3 -
	Evaluation: Linode -
	Evaluation: Wikipedia -
	PFS: Precision-Recall (Autocomplete)
	PFS: Precision-Recall (Linode)
	PFS: Precision-Recall (Wikipedia)
	Example
	PFG-DE: ACC(X)
	PFG-DE: Mutation Strategy
	PFG-DE: Datasets
	PFG-DE: Datasets – Netflix example
	PFG-DE vs. PFG-LP: and Runtime (Linode)
	PFG-DE vs. PFG-LP: and Runtime (Linode)
	PFG-DE vs. PFG-LP: and Runtime (Wikipedia)
	PFG-DE vs. PFG-LP: and Runtime (Wikipedia)
	PFG-DE vs. PFG-LP: and Runtime (Netflix)
	PFG-DE vs. PFG-LP: and Runtime (Netflix)

