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Abstract—In recent years, Dynamic Adaptive Streaming over 

HTTP (DASH) has become the primary method to deliver video 

on the Internet, with Netflix currently leading the industry. Thus, 

any method to determine the content of a wireless Netflix stream 

presents a potential privacy concern for the entire DASH 

industry. In this paper, we demonstrate that it is possible to 

identify the Netflix video being streamed over an encrypted 

802.11n connection with high accuracy in less than five minutes. 

Moreover, our technique works in scenarios where it is difficult 

to capture data frames due to a wireless access point’s use of 
enhancements such as beamforming and multi-input/multi-

output transmission. 

Keywords—privacy; traffic analysis; wireless networks; 

dynamic adaptive streaming over HTTP 

I. INTRODUCTION 

Yearly reports from Sandvine [9, 10] continually indicate 
that Dynamic Adaptive Streaming over HTTP (DASH) 
services account for a large proportion of traffic to households 
in North America, with Netflix alone comprising 34.9% of all 
downstream traffic in the most recent report. As such, Netflix 
presents a prime target for an adversary that wants to determine 
the content being watched by a given household. In this paper, 
we assume that the adversary is a wireless eavesdropper and 
that the target household uses a wireless access point (WAP) 
with encryption (e.g. WPA2). We also assume that an 
eavesdropper has only a limited amount of time to monitor a 
given WAP (e.g. less than 5 minutes) before drawing attention. 

Despite these challenges, we show that an eavesdropper 
can accurately identify the Netflix video being streamed by (i) 
estimating WAP-to-client throughput from the client’s Block 
Acknowledgements (BlockAcks) and then (ii) matching this 
throughput data to a video fingerprint. Since our technique 
does not require access to frame payloads, it renders encryption 
moot. Furthermore, since BlockAcks are often transmitted via 
802.11a/g, our technique is effective in environments where 
the eavesdropper is unable to capture data frames due to a 
WAP’s use of 802.11n enhancements such as beamforming 
and multiple-input/multiple-output (MIMO) transmission. 

Although our paper focuses on Netflix, our methods are 
applicable to any DASH service that exhibits the same 
characteristics as Netflix. We have made our code and test data 
available at [4]. The rest of the paper is organized as follows. 

Section II provides an introduction to DASH. Section III 
details our method for constructing a video database and 
Section IV describes our method for capturing wireless data. 
Our method for identifying a Netflix video is explained in 
Section V and evaluated in Section VI. Section VII offers 
countermeasures to thwart our technique and Section VIII 
reviews related work. 

II. BACKGROUND 

A DASH video is first encoded at various bitrates, or 
quality levels, and then each encoding is segmented into equal 
length time slices. These video segments are then served from 
HTTP web servers, typically via content distribution networks 
(CDNs). During playback, a DASH client will continually 
gauge the available bandwidth to determine which quality level 
of each segment should be requested. If bandwidth is limited, a 
DASH client will request segments from a lower bitrate. As 
bandwidth improves, the client will begin to request segments 
from a higher bitrate. 

Netflix currently provides browser-based streaming with 
Microsoft Silverlight [8]. Netflix encodes each video at 235, 
375, 560, 750, 1050, 1750, 2350, and 3000 kbps and then 
segments them into four second video segments and 16 second 
audio segments. The individual encodings are made available 
as separate .ismv files, a format which is based on MPEG4. As 
defined in the MPEG4 specification [5], each .ismv contains 
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Fig. 1.  A comparison of the average bitrate between the same video 

(Curious George, season 1, episode 1) on different DASH services. 
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metadata at the beginning of each file which details how the 
video is segmented. Specifically, the metadata’s segment index 
box (sidx) lists the sizes (in bytes) for each individual video 
segment of an encoding. The Netflix Silverlight player uses 
this information to generate byte range requests when 
requesting each segment. Thus, one of the first actions 
performed by the Silverlight player when streaming a video is 
to retrieve the metadata from each encoding, thereby allowing 
the player to switch bitrates at any time during the stream. 
Currently, the metadata of an .ismv is neither encrypted nor 
protected by Digital Rights Management (DRM), but DRM 
does encrypt the actual video content. 

Netflix’s Silverlight player seeks to fill a four minute buffer 
as quickly as possible. As long as the buffer remains full, the 
player will request one video segment each time a video 
segment in the buffer is consumed, resulting in requests being 
sent every four seconds (on average). This behavior is referred 
to as steady state playback [6]. 

In the course of our research, we have discovered that 
Netflix uses variable bitrate encoding (VBR) to a greater extent 
than other services, as shown in Fig. 1. It is Netflix’s extensive 
use of VBR, coupled with DASH’s steady state mode, which 
makes Netflix videos identifiable via throughput analysis. 

III. CREATING THE VIDEO DATABASE 

In this section, we describe the process to obtain Netflix 
fingerprints and then present the method that we developed to 
turn fingerprints into a searchable database of individual two-
minute windows. This database will be queried by the 
identification algorithm in Section V. 

A. Acquiring Fingerprints 

Critical to the success of our technique is the ability to 
create an authoritative database of video fingerprints, where 
each fingerprint lists the sequence of video segment sizes for 
each quality level of a video. Conveniently, the information 
required to create a fingerprint is provided by each .ismv’s 
metadata (sidx). Thus, the task is reduced to (i) obtaining an 
.ismv’s metadata and (ii) parsing its sidx to obtain the sequence 
of video segment sizes. 

We provide a script at [4] that performs these steps with 
minimal effort required by a researcher. The script requires that 
a researcher capture the first few seconds of a video with the 
Firefox add-on Tamper Data [13], during which time the 
Silverlight player sends HTTP GET requests for each quality 
level’s metadata. The script (i) extracts the metadata URLs, (ii) 
re-downloads all metadata, and (iii) calculates segment sizes 

from sidx information. With this script, a researcher can create 
the fingerprints for a video’s multiple encodings in 2-3 
minutes. A sample fingerprint is depicted in Fig. 2. 

B. Window Storage and Retrieval 

From each fingerprint we extract every 30-segment sliding 
window and store them individually in a six-dimensional (6D) 
kd-tree [1]. Each window is stored with the following key: 

 1
st
 Dimension: Total Size. This is the total amount of 

data contained in the window (unit = bytes). 

 2
nd

 – 6
th

 Dimensions: Data Allocations. We divide the 
two minute window into five 24-second slices and 
calculate the percentage of the entire window’s data 
contained in each slice (no units; these are numbers 
between 0.0 to 1.0). 

When we run the identification algorithm, outlined in 
Section V, this 6D key allows us to perform a range search for 
candidate windows that are roughly the same size (1

st
 

dimension) and shape (2
nd

 – 6
th
 dimensions) as a given wireless 

capture. Fig. 3 depicts the key for a sample window from 
Legally Blonde. Since this movie is 1440 segments long (96 
min), each encoding results in 1411 sliding windows. Thus, 
Legally Blonde’s eight encodings will yield 11,288 individual 
windows.  

Fig. 3.  Key construction for segments 61 through 90 of Legally Blonde 

(3000 kbps encoding). This window’s 6D key is: [48128915, 0.227, 

0.185, 0.154, 0.198, 0.236]. 
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Fig. 2.  Video fingerprint for Room on the Broom (3000 kbps encoding). 
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IV. DATA ACQUISITION 

In this section, we describe our method to capture and 
process wireless traffic to support identification. 

A. Estimating WAP-to-Client Throughput 

Although the most direct method to calculate WAP-to-
client throughput is to log the sizes of all data frames sent to 
the client, it can be difficult to capture data frames in 802.11n 
environments. For instance, if a WAP uses beamforming, then 
the eavesdropper may have trouble finding a location that 
provides sufficient received signal strength. Alternatively, if 
the WAP and client support MIMO transmissions, then the 
eavesdropper’s capture device must support the same number 
of spatial streams employed by the WAP and client. 

To demonstrate the effects of MIMO incompatibility when 
capturing, the wireless capture in Fig. 4 represents a snippet of 
a Netflix stream as transmitted by an ASUS RT-N66U 3x3 
wireless router to a Windows 7 laptop equipped with an Intel 
Centrino Advanced-N 6200 2x2 adapter. This capture was 
produced by a laptop running Kali Linux using a TP-LINK TL-
WN722N 1x1 USB adapter. Notice that Fig. 4 contains no data 
frames. This is due to the 1x1 USB adapter’s inability to 
capture data frames that are sent over multiple spatial streams. 

Although the capture in Fig. 4 contains no data frames, it 
does contain control frames, namely request-to-send (RTS), 
clear-to-send (CTS), and BlockAck control frames. Further 
inspection of the Radiotap headers for these frames in 
Wireshark reveals that they were sent via 802.11g (Wireshark 
lists them as pure-g), i.e. they were not sent via 802.11n 
MIMO. Thus, since BlockAcks are easier to capture, we 
leverage them to estimate throughput. We do so by (i) 
assuming that a BlockAck’s starting sequence number 
correlates to the receipt of the data frame with the same 
sequence number, (ii) inserting missing data frames between 
the received BlockAcks, and (iii) assuming that all data frames 
carry a full-size packet (i.e. 1500 bytes), which equates to 1460 
bytes of application layer data. Fig. 5 depicts our approach. 

B. Data Aggregation 

Before attempting to match the throughput data to a 
window in the kd-tree, we must first aggregate the frame sizes 
into four second chunks. In order for a match to be found, 
however, the four second chunks must be aligned with the 
times at which the Netflix player requested video segments 
during steady state playback. If these chunks are misaligned, 
then data frames from adjacent video segments will be 
incorrectly combined, resulting in a false negative. 

To achieve proper alignment, we first sum frames into 250 
ms bins, with the first bin starting upon receipt of the first 
captured frame. These bins are stored in a deque that contains a 
moving window of the most recent 480 bins (i.e. two minutes 
of throughput data). As the moving window advances, the 
current deque of 480 bins is consolidated into a sequence of 30 
chunks that is then processed by the identification step. Thus, 
every two minutes’ worth of throughput data will be checked 
using 16 different alignments. 

Note that these 30 chunk sequences will initially represent 
both video and audio throughput. For browser based streaming, 
the Netflix player will request a single, 16-second audio 
segment for every four video segments. These audio segments 
are encoded at a constant bitrate (CBR) of 64 kbps and they 
average 135 kB in size. Since our technique is unable to detect 
when these audio segments were received, we simply subtract 
33.75 kB from each four second chunk in order to approximate 
the removal of audio data from the capture. Removing audio 
data allows us to place tighter restrictions on the 1

st
 dimension 

when conducting the kd-tree range search, described in Section 
V-A. 

V. IDENTIFICATION ALGORITHM 

A. Stage 1 – Retrieve Candidate Windows 

The purpose of Stage 1 is to generate a shortlist of 
candidate windows that exhibit similar throughput 
characteristics as the capture window. This is done by creating 
a 6D key for the capture window and then conducting a range 
search of the kd-tree for all candidate windows where the 1

st
 

dimension and the 2
nd

 through 6
th
 dimensions are within a 

predetermined set of thresholds from the capture window. The 
results returned by the range search are then sent to Stage 2. 

B. Stage 2 – Report Matching Windows 

The purpose of Stage 2 is to determine which, if any, of the 
candidate windows match the capture window. To do this, we 
perform the following two steps for each candidate window: 

1) Ignore Outliers: Even during steady state playback, it is 
sometimes the case that a video segment will be received 
outside of its expected four second slot (either early or late). 
When this occurs, it will create an abundance of data in a 

Fig. 4.  Sample snippet from a wireless capture of Netflix traffic. 

Time     Source  Dest. Info

05:42.5028  WAP     Client  RTS

05:42.5028  Client  WAP     CTS

05:42.5028  Client  WAP     Block Ack

Start: 3290

05:42.5028  WAP     Client  RTS

05:42.5028  Client  WAP     CTS

05:42.5028  Client  WAP     Block Ack

Start: 3295

05:42.5028  WAP     Client  RTS

05:42.5053  Client  WAP     CTS

05:42.5053  WAP     Client  RTS

05:42.5053  Client  WAP     CTS

05:42.5079  Client  WAP     Block Ack

Start: 3297

Fig. 5.  Estimating WAP-to-client throughput using the capture depicted 

in Fig. 4. 

Sequence  App. Layer

Time      Number   Data

05:42.5028    3290       1460

05:42.5028    3291 1460

05:42.5028    3292  1460

05:42.5028    3293  1460

05:42.5028    3294 1460

05:42.5028    3295 1460

05:42.5053    3296 1460

05:42.5079    3297       1460



neighboring slot and a drought of data in its own slot, thereby 
creating two incorrect throughput measurements. To account 
for this, we allow for two such occurrences by ignoring the 
four “worst” pairs of segments (by percentage difference) 
from the candidate and capture windows, reducing the number 
of segments under consideration to 26 pairs. When the 
candidate and capture windows are plotted as an x,y scatter 
plot, this step has the effect of removing four of the outliers. 

2) Calculate Pearson’s Correlation: The second step is to 

compute Pearson’s correlation (r) between the remaining 26 

points in the candidate and capture windows. If Pearson’s r is 

above a given threshold, then the candidate window is 

considered a match. A matching window will be reported to 

Stage 3 with the following information: the title of the source 

video, the starting segment number of the window, and the 

start time of the capture window that it matched. 

C. Stage 3 – Determine Video from Reported Matches 

Stage 3 receives the reported matches (the full 30-segment 
window) from Stage 2 and stores them. From here, Stage 3 is 
equipped with two modes that it can use to identify a video: 
fast mode and slow mode. 

1) Fast Mode: Upon the receipt of each new match, Stage 3 
conducts an “all pairs” test to see if there is a pair of windows 
from the same source video that (i) overlap by no more than 25 
segments and (ii) whose separation in the source fingerprint is 
congruent to the timestamp difference between their 
corresponding capture windows. Once such a pair is found, the 
video is declared and the algorithm terminates early. Since the 
second window in the pair must begin at least five segments 
after the first window began, the earliest declaration cannot 
occur before 2 minutes and 20 seconds into the wireless 
capture. 

This mode is modeled after the final step performed by the 
audio search service Shazam [14]. Whereas our technique 
requires only a single pair of correlated matches, [14] requires 
multiple temporally-aligned matches from a single audio track. 
Should we find that our method generates a high number of 
false positives as the fingerprint database grows, one potential 
improvement would be to require multiple correlated matches, 
as in [14]. 

2) Slow Mode: Occasionally, the algorithm fails to make a 
fast mode declaration prior to the end of the wireless capture. 
In this case, the algorithm reverts to a majority voting scheme. 
For each potential candidate video, Stage 3 calculates the 
number of distinct windows matched and declares that the 
video with the most distinct matches is the video being 
watched. 

VI. EVALUATION 

To support the evaluation of our technique, we created two 
sets of fingerprints: Dataset A, which consists of 50 movies, 
and Dataset B, which consists of the first season of House of 
Cards. When loaded into the kd-tree, Dataset A yields 584,776 
windows and Dataset B yields 77,048 windows. 

A. Assessing Stage 1’s Filtering Capability 

The purpose of Stage 1 is to present only the most relevant 
candidate windows to Stage 2, thereby improving query 
efficiency. As such, our first test is designed to gauge the 
ability of Stage 1 to filter the video database for candidate 
windows. For this test, we built a database from Dataset A and 
proceeded to conduct a range search for each window in this 
same database. For each search, we recorded the number of 
windows returned in the shortlist. Since each search represents 
a window that is also in the database, every search will return 
at least one result. This test was conducted twice: once with a 
set of loose ranges and once with a set of tight ranges. The 
loose range search was conducted with ±2% for the 1

st
 

Dimension and ±0.015 for the 2
nd

 through 6
th
 Dimensions. The 

tight range search was conducted with ±1% for the 1
st
 

Dimension and ±0.01 for the 2
nd

 through 6
th
 Dimensions. Fig. 6 

depicts the results as an inverse cumulative distribution 
function. 

For the loose range test, 7.4% of all range searches returned 
one result (i.e. the same window used for the search), 95% of 
all range searches returned no more than 314 candidate 
windows, and no search returned more than 1351 candidate 
windows. For the tight range test, 28.5% returned one result, 
95% returned no more than 37 candidates, and no search 
returned more than 214 candidates. In other words, all tight 
range searches returned less than 0.037% of the database and 
all loose range searches returned less than 0.23% of the 
database. 

B. Full System Assessment 

In order to evaluate our technique in a “real world” setting, 
we streamed 25 movies from Dataset A using the same 
hardware that generated Fig. 4 within a residential home. We 
placed the wireless router and Kali Linux laptop on the first 
floor of the home, and the Windows 7 laptop was placed on the 
second floor. The router was configured to use 2.4GHz channel 
11. The home has a 30 Mbps downstream and 10 Mbps 
upstream Internet connection. 

The order and selection of the 25 movies were determined 
by shuffling the movie titles and streaming the first 25 listed. 
For each movie, we first skipped to a random scene in the 
middle of the movie and then allowed the stream to reach 
steady state playback before beginning the wireless capture on 

Fig. 6. Cumulative probability of Stage 1 shortlist sizes when performing 

a range search of Dataset A.  
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the eavesdropper laptop. Each capture was limited to exactly 

five minutes via the Linux timeout command. 

We then ran a series of tests on the 25 capture files using a 
variety of thresholds to assess the technique’s performance at 
each stage. Specifically, we tested Stage 1 using the loose and 
tight range searches across increasing thresholds for the Stage 
2 Pearson’s correlation. These tests were done for both of 
Stage 3’s modes. For each permutation of thresholds and 
modes, we ran our program on the 25 captures and calculated 
its overall accuracy (total number of correct identifications / 
25). 

Figure 7 summarizes our results. Over all of the 
permutations of thresholds, Pearson’s correlation (Stage 2) had 
the greatest overall effect on accuracy. As the threshold for 
Pearson’s correlation rises, Stage 2 becomes an increasingly 
important component of the technique’s accuracy. At optimal 
ranges for Pearson’s, there is no difference in accuracy among 
the Stage 1 thresholds. In other words, loose/fast and tight/fast 
converge to the same results, and loose/slow and tight/slow 
converge to the same results. 

Peak accuracy for both fast and slow modes is reached 
between r = 0.865 and r = 0.91, with slow mode achieving an 
accuracy of 0.96 and fast mode achieving an accuracy of 0.92. 
Accuracy then wanes as Pearson’s r is increased beyond 0.91. 
At higher values for r the technique begins to reject correct 
windows as the program fails to allow for variation that arises 
from factors such as network conditions and the inaccuracies of 
our throughput estimation technique. 

While the effect of Stage 2 is significant, tuning Stage 1 
thresholds is important. Indeed, we see that moderate accuracy 
can be achieved even at low thresholds for Pearson’s when 
using a tight range search, particularly when coupled with 
Stage 3’s fast mode. This performance is due to the 
combination of Stage 1’s ability to filter the database for 
relevant windows and fast mode’s requirement that the offset 
between two candidate windows in a fingerprint must equal the 
time difference in the capture file. Moreover, a tight range 
search would be advantageous since it sends fewer candidate 
windows to Stage 2, thereby reducing the execution time of the 
program. 

Across all of our tests, our technique never identified a 
single window from the Star Trek Into Darkness capture with 
even the lowest of thresholds for Stages 1 and 2. While this 
issue could be due to a failure of our algorithm, it is more 
likely due to a faulty capture (e.g. if the Netflix stream did not 
maintain steady state playback for a sufficient length of time). 
In the future, we plan on capturing redundant samples over 
different time periods to better identify and analyze the effects 
of network conditions on our identification algorithm. 

C. Analysis of Identical Footage 

When our technique is used to compare the fingerprints 
themselves, it reveals an interesting phenomenon: identical 
footage can produce strikingly similar segment sizes across 
videos. To demonstrate this effect, we conducted a pairwise 

Fig. 7. The effect of increasing Stage 2 thresholds on accuracy. 
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(a) Fingerprint similarity due to the House of Cards opening credits, 

depicted in gray (each episode begins with a unique scene before playing 

the credits). 
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comparison between every fingerprint in Dataset B (excluding 
comparisons between the same episode) and identified sub-
regions where our technique could not distinguish between the 
different videos. 

For this test, we set Stage 1 to use a tight range search, we 
set Stage 2 to a minimum r of 0.91, and we used Stage 3’s fast 
mode for the final declaration. Of the 4,992 fingerprint 
comparisons, two match-ups produced indistinguishable sub-
regions, depicted in Fig. 8. In both instances, the confusion is a 
direct result of similar segment sizes produced by either the 
opening credits or the end credits. Interestingly, Wang [14] 
notes that Shazam produces false positives under similar 
scenarios (e.g. when a song samples audio from another track). 

VII. COUNTERMEASURES 

There are several potential countermeasures to our 
inference method. First, our method is only effective on videos 
that exhibit a high degree of segment size variation between 
windows, thus any service that uses either (i) VBR encoding 
within rigid bitrate constraints or (ii) CBR encoding will be 
resistant to our attack. That being said, it is doubtful that 
DASH service providers would be inclined to modify their 
encoding parameters, as any change to video quality might 
have a negative effect on user satisfaction. 

An alternative, then, is to alter steady state playback so that 
video segments are not requested at fixed intervals. The naïve 
approach would be to simply introduce random offsets between 
requests. Li et al. present a rate adaptation algorithm in [6] that 
tailors its request rate in order to better gauge the available 
bandwidth. This technique both eschews the standard form of 
steady state playback and improves streaming performance. 

VIII.  RELATED WORK 

There is an extensive body of work on traffic classification 
based solely on data sizes and timing, of which [2], [3], [7], 
[12], and [15] represent only a small sample. Although our 
technique is focused on HTTP traffic, as are [3], [7], and [12], 
we are able to exploit characteristics of DASH that are not 
present in other HTTP applications, namely that (i) 
authoritative data sizes can be easily obtained, (ii) objects are 
requested sequentially, and (iii) timing is predictable during 
steady state playback. 

Most similar to our work is that of Saponas et al. [11], who 
present a Discrete Fourier Transform (DFT) based approach to 
identify the content being streamed by a Slingbox Pro. In 
general, their technique required wireless captures that ranged 
from 10 to 40 minutes. Although Saponas et al. implored both 
the signal processing and security communities to confront the 
privacy issues related to VBR-based streaming, our work 
demonstrates that these issues have not been resolved. 

IX. CONCLUSION 

We have demonstrated that it is possible to identify Netflix 
videos streamed over encrypted 802.11n connections with 
greater than 90% accuracy in less than five minutes. In other 
words, despite encryption at the link layer and application layer 
(DRM), it is possible to eavesdrop on a user’s video stream. 

Since our technique only relies on the interplay between VBR 
encoding and steady state playback, we believe that this 
presents a potential privacy concern for the entire DASH 
industry, and we echo previous authors’ concerns regarding the 
inherent weakness of VBR to throughput analysis. We have 
made our code and data available to the research community. 

As part of our future work we plan to create additional 
captures over various network conditions. The larger dataset 
will enable us to better characterize the accuracy of our 
algorithm and its ideal thresholds, better analyze the 
deleterious effects of network conditions on steady state 
playback, and determine what the effects are, if any, of varying 
the DASH client bandwidth. Furthermore, to account for 
windows that are naturally indistinguishable (e.g. opening 
credits of the same series) we plan to create an additional field 
in the database to flag these windows. We can then add logic to 
the algorithm that will continue to capture if the sniffed traffic 
is potentially one of the flagged windows. Another area of 
consideration is the development of a threshold for the slow 
detection method that will determine the minimal number of 
windows that should be collected in order to make an accurate 
claim, i.e. if the threshold is not met, then the slow method 
would declare that the video does not exist in its dataset. 
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