
Leaky Streams
Identifying Variable Bitrate DASH Videos Streamed over Encrypted 802.11n Connections

Andrew Reed, Benjamin Klimkowski

Dept. of Electrical Engineering and Computer Science

United States Military Academy at West Point

West Point, New York, USA

{andrew.reed, benjamin.klimkowski}@usma.edu

Abstract—In recent years, Dynamic Adaptive Streaming over

HTTP (DASH) has become the primary method to deliver video

on the Internet, with Netflix currently leading the industry. Thus,

any method to determine the content of a wireless Netflix stream

presents a potential privacy concern for the entire DASH

industry. In this paper, we demonstrate that it is possible to

identify the Netflix video being streamed over an encrypted

802.11n connection with high accuracy in less than five minutes.

Moreover, our technique works in scenarios where it is difficult

to capture data frames due to a wireless access point’s use of
enhancements such as beamforming and multi-input/multi-

output transmission.

Keywords—privacy; traffic analysis; wireless networks;

dynamic adaptive streaming over HTTP

I. INTRODUCTION

Yearly reports from Sandvine [9, 10] continually indicate
that Dynamic Adaptive Streaming over HTTP (DASH)
services account for a large proportion of traffic to households
in North America, with Netflix alone comprising 34.9% of all
downstream traffic in the most recent report. As such, Netflix
presents a prime target for an adversary that wants to determine
the content being watched by a given household. In this paper,
we assume that the adversary is a wireless eavesdropper and
that the target household uses a wireless access point (WAP)
with encryption (e.g. WPA2). We also assume that an
eavesdropper has only a limited amount of time to monitor a
given WAP (e.g. less than 5 minutes) before drawing attention.

Despite these challenges, we show that an eavesdropper
can accurately identify the Netflix video being streamed by (i)
estimating WAP-to-client throughput from the client’s Block
Acknowledgements (BlockAcks) and then (ii) matching this
throughput data to a video fingerprint. Since our technique
does not require access to frame payloads, it renders encryption
moot. Furthermore, since BlockAcks are often transmitted via
802.11a/g, our technique is effective in environments where
the eavesdropper is unable to capture data frames due to a
WAP’s use of 802.11n enhancements such as beamforming
and multiple-input/multiple-output (MIMO) transmission.

Although our paper focuses on Netflix, our methods are
applicable to any DASH service that exhibits the same
characteristics as Netflix. We have made our code and test data
available at [4]. The rest of the paper is organized as follows.

Section II provides an introduction to DASH. Section III
details our method for constructing a video database and
Section IV describes our method for capturing wireless data.
Our method for identifying a Netflix video is explained in
Section V and evaluated in Section VI. Section VII offers
countermeasures to thwart our technique and Section VIII
reviews related work.

II. BACKGROUND

A DASH video is first encoded at various bitrates, or
quality levels, and then each encoding is segmented into equal
length time slices. These video segments are then served from
HTTP web servers, typically via content distribution networks
(CDNs). During playback, a DASH client will continually
gauge the available bandwidth to determine which quality level
of each segment should be requested. If bandwidth is limited, a
DASH client will request segments from a lower bitrate. As
bandwidth improves, the client will begin to request segments
from a higher bitrate.

Netflix currently provides browser-based streaming with
Microsoft Silverlight [8]. Netflix encodes each video at 235,
375, 560, 750, 1050, 1750, 2350, and 3000 kbps and then
segments them into four second video segments and 16 second
audio segments. The individual encodings are made available
as separate .ismv files, a format which is based on MPEG4. As
defined in the MPEG4 specification [5], each .ismv contains

The views expressed herein are those of the authors and do not reflect the

position of the United States Military Academy, the Department of the Army,

or the Department of Defense.

Fig. 1. A comparison of the average bitrate between the same video

(Curious George, season 1, episode 1) on different DASH services.

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12 14 16 18 20 22

V
id

eo
 B

it
ra

te

2
0

-S
ec

o
n

d
 M

o
v

in
g
 A

v
er

ag
e

(M
b

p
s)

Time (minutes)

Amazon Prime @ 6 Mbps

Netflix @ 3 Mbps

metadata at the beginning of each file which details how the
video is segmented. Specifically, the metadata’s segment index
box (sidx) lists the sizes (in bytes) for each individual video
segment of an encoding. The Netflix Silverlight player uses
this information to generate byte range requests when
requesting each segment. Thus, one of the first actions
performed by the Silverlight player when streaming a video is
to retrieve the metadata from each encoding, thereby allowing
the player to switch bitrates at any time during the stream.
Currently, the metadata of an .ismv is neither encrypted nor
protected by Digital Rights Management (DRM), but DRM
does encrypt the actual video content.

Netflix’s Silverlight player seeks to fill a four minute buffer
as quickly as possible. As long as the buffer remains full, the
player will request one video segment each time a video
segment in the buffer is consumed, resulting in requests being
sent every four seconds (on average). This behavior is referred
to as steady state playback [6].

In the course of our research, we have discovered that
Netflix uses variable bitrate encoding (VBR) to a greater extent
than other services, as shown in Fig. 1. It is Netflix’s extensive
use of VBR, coupled with DASH’s steady state mode, which
makes Netflix videos identifiable via throughput analysis.

III. CREATING THE VIDEO DATABASE

In this section, we describe the process to obtain Netflix
fingerprints and then present the method that we developed to
turn fingerprints into a searchable database of individual two-
minute windows. This database will be queried by the
identification algorithm in Section V.

A. Acquiring Fingerprints

Critical to the success of our technique is the ability to
create an authoritative database of video fingerprints, where
each fingerprint lists the sequence of video segment sizes for
each quality level of a video. Conveniently, the information
required to create a fingerprint is provided by each .ismv’s
metadata (sidx). Thus, the task is reduced to (i) obtaining an
.ismv’s metadata and (ii) parsing its sidx to obtain the sequence
of video segment sizes.

We provide a script at [4] that performs these steps with
minimal effort required by a researcher. The script requires that
a researcher capture the first few seconds of a video with the
Firefox add-on Tamper Data [13], during which time the
Silverlight player sends HTTP GET requests for each quality
level’s metadata. The script (i) extracts the metadata URLs, (ii)
re-downloads all metadata, and (iii) calculates segment sizes

from sidx information. With this script, a researcher can create
the fingerprints for a video’s multiple encodings in 2-3
minutes. A sample fingerprint is depicted in Fig. 2.

B. Window Storage and Retrieval

From each fingerprint we extract every 30-segment sliding
window and store them individually in a six-dimensional (6D)
kd-tree [1]. Each window is stored with the following key:

 1
st
 Dimension: Total Size. This is the total amount of

data contained in the window (unit = bytes).

 2
nd

 – 6
th

 Dimensions: Data Allocations. We divide the
two minute window into five 24-second slices and
calculate the percentage of the entire window’s data
contained in each slice (no units; these are numbers
between 0.0 to 1.0).

When we run the identification algorithm, outlined in
Section V, this 6D key allows us to perform a range search for
candidate windows that are roughly the same size (1

st

dimension) and shape (2
nd

 – 6
th
 dimensions) as a given wireless

capture. Fig. 3 depicts the key for a sample window from
Legally Blonde. Since this movie is 1440 segments long (96
min), each encoding results in 1411 sliding windows. Thus,
Legally Blonde’s eight encodings will yield 11,288 individual
windows.

Fig. 3. Key construction for segments 61 through 90 of Legally Blonde

(3000 kbps encoding). This window’s 6D key is: [48128915, 0.227,

0.185, 0.154, 0.198, 0.236].

22.7%

18.5%

15.4%

19.8%

23.6%

10%

15%

20%

25%

30%

P
er

ce
n
t

o
f

W
in

d
o

w

2nd - 6th Dimensions: Percent Allocation

2nd Dim

3rd Dim

4th Dim

5th Dim

6th Dim

0

0.5

1

1.5

2

2.5

3

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90V
id

eo
 S

eg
m

en
t

S
iz

e
(m

eg
ab

y
te

s)

Segment Number

1st Dim: Total Sum = 48,128,915 bytesΣ

Fig. 2. Video fingerprint for Room on the Broom (3000 kbps encoding).

0

0.5

1

1.5

2

2.5

3

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301 321 341 361 381 401

V
id

eo
 S

eg
m

en
t

S
iz

e
(m

eg
ab

y
te

s)

Video Segment Number

IV. DATA ACQUISITION

In this section, we describe our method to capture and
process wireless traffic to support identification.

A. Estimating WAP-to-Client Throughput

Although the most direct method to calculate WAP-to-
client throughput is to log the sizes of all data frames sent to
the client, it can be difficult to capture data frames in 802.11n
environments. For instance, if a WAP uses beamforming, then
the eavesdropper may have trouble finding a location that
provides sufficient received signal strength. Alternatively, if
the WAP and client support MIMO transmissions, then the
eavesdropper’s capture device must support the same number
of spatial streams employed by the WAP and client.

To demonstrate the effects of MIMO incompatibility when
capturing, the wireless capture in Fig. 4 represents a snippet of
a Netflix stream as transmitted by an ASUS RT-N66U 3x3
wireless router to a Windows 7 laptop equipped with an Intel
Centrino Advanced-N 6200 2x2 adapter. This capture was
produced by a laptop running Kali Linux using a TP-LINK TL-
WN722N 1x1 USB adapter. Notice that Fig. 4 contains no data
frames. This is due to the 1x1 USB adapter’s inability to
capture data frames that are sent over multiple spatial streams.

Although the capture in Fig. 4 contains no data frames, it
does contain control frames, namely request-to-send (RTS),
clear-to-send (CTS), and BlockAck control frames. Further
inspection of the Radiotap headers for these frames in
Wireshark reveals that they were sent via 802.11g (Wireshark
lists them as pure-g), i.e. they were not sent via 802.11n
MIMO. Thus, since BlockAcks are easier to capture, we
leverage them to estimate throughput. We do so by (i)
assuming that a BlockAck’s starting sequence number
correlates to the receipt of the data frame with the same
sequence number, (ii) inserting missing data frames between
the received BlockAcks, and (iii) assuming that all data frames
carry a full-size packet (i.e. 1500 bytes), which equates to 1460
bytes of application layer data. Fig. 5 depicts our approach.

B. Data Aggregation

Before attempting to match the throughput data to a
window in the kd-tree, we must first aggregate the frame sizes
into four second chunks. In order for a match to be found,
however, the four second chunks must be aligned with the
times at which the Netflix player requested video segments
during steady state playback. If these chunks are misaligned,
then data frames from adjacent video segments will be
incorrectly combined, resulting in a false negative.

To achieve proper alignment, we first sum frames into 250
ms bins, with the first bin starting upon receipt of the first
captured frame. These bins are stored in a deque that contains a
moving window of the most recent 480 bins (i.e. two minutes
of throughput data). As the moving window advances, the
current deque of 480 bins is consolidated into a sequence of 30
chunks that is then processed by the identification step. Thus,
every two minutes’ worth of throughput data will be checked
using 16 different alignments.

Note that these 30 chunk sequences will initially represent
both video and audio throughput. For browser based streaming,
the Netflix player will request a single, 16-second audio
segment for every four video segments. These audio segments
are encoded at a constant bitrate (CBR) of 64 kbps and they
average 135 kB in size. Since our technique is unable to detect
when these audio segments were received, we simply subtract
33.75 kB from each four second chunk in order to approximate
the removal of audio data from the capture. Removing audio
data allows us to place tighter restrictions on the 1

st
 dimension

when conducting the kd-tree range search, described in Section
V-A.

V. IDENTIFICATION ALGORITHM

A. Stage 1 – Retrieve Candidate Windows

The purpose of Stage 1 is to generate a shortlist of
candidate windows that exhibit similar throughput
characteristics as the capture window. This is done by creating
a 6D key for the capture window and then conducting a range
search of the kd-tree for all candidate windows where the 1

st

dimension and the 2
nd

 through 6
th
 dimensions are within a

predetermined set of thresholds from the capture window. The
results returned by the range search are then sent to Stage 2.

B. Stage 2 – Report Matching Windows

The purpose of Stage 2 is to determine which, if any, of the
candidate windows match the capture window. To do this, we
perform the following two steps for each candidate window:

1) Ignore Outliers: Even during steady state playback, it is
sometimes the case that a video segment will be received
outside of its expected four second slot (either early or late).
When this occurs, it will create an abundance of data in a

Fig. 4. Sample snippet from a wireless capture of Netflix traffic.

Time Source Dest. Info

05:42.5028 WAP Client RTS

05:42.5028 Client WAP CTS

05:42.5028 Client WAP Block Ack

Start: 3290

05:42.5028 WAP Client RTS

05:42.5028 Client WAP CTS

05:42.5028 Client WAP Block Ack

Start: 3295

05:42.5028 WAP Client RTS

05:42.5053 Client WAP CTS

05:42.5053 WAP Client RTS

05:42.5053 Client WAP CTS

05:42.5079 Client WAP Block Ack

Start: 3297

Fig. 5. Estimating WAP-to-client throughput using the capture depicted

in Fig. 4.

Sequence App. Layer

Time Number Data

05:42.5028 3290 1460

05:42.5028 3291 1460

05:42.5028 3292 1460

05:42.5028 3293 1460

05:42.5028 3294 1460

05:42.5028 3295 1460

05:42.5053 3296 1460

05:42.5079 3297 1460

neighboring slot and a drought of data in its own slot, thereby
creating two incorrect throughput measurements. To account
for this, we allow for two such occurrences by ignoring the
four “worst” pairs of segments (by percentage difference)
from the candidate and capture windows, reducing the number
of segments under consideration to 26 pairs. When the
candidate and capture windows are plotted as an x,y scatter
plot, this step has the effect of removing four of the outliers.

2) Calculate Pearson’s Correlation: The second step is to

compute Pearson’s correlation (r) between the remaining 26

points in the candidate and capture windows. If Pearson’s r is

above a given threshold, then the candidate window is

considered a match. A matching window will be reported to

Stage 3 with the following information: the title of the source

video, the starting segment number of the window, and the

start time of the capture window that it matched.

C. Stage 3 – Determine Video from Reported Matches

Stage 3 receives the reported matches (the full 30-segment
window) from Stage 2 and stores them. From here, Stage 3 is
equipped with two modes that it can use to identify a video:
fast mode and slow mode.

1) Fast Mode: Upon the receipt of each new match, Stage 3
conducts an “all pairs” test to see if there is a pair of windows
from the same source video that (i) overlap by no more than 25
segments and (ii) whose separation in the source fingerprint is
congruent to the timestamp difference between their
corresponding capture windows. Once such a pair is found, the
video is declared and the algorithm terminates early. Since the
second window in the pair must begin at least five segments
after the first window began, the earliest declaration cannot
occur before 2 minutes and 20 seconds into the wireless
capture.

This mode is modeled after the final step performed by the
audio search service Shazam [14]. Whereas our technique
requires only a single pair of correlated matches, [14] requires
multiple temporally-aligned matches from a single audio track.
Should we find that our method generates a high number of
false positives as the fingerprint database grows, one potential
improvement would be to require multiple correlated matches,
as in [14].

2) Slow Mode: Occasionally, the algorithm fails to make a
fast mode declaration prior to the end of the wireless capture.
In this case, the algorithm reverts to a majority voting scheme.
For each potential candidate video, Stage 3 calculates the
number of distinct windows matched and declares that the
video with the most distinct matches is the video being
watched.

VI. EVALUATION

To support the evaluation of our technique, we created two
sets of fingerprints: Dataset A, which consists of 50 movies,
and Dataset B, which consists of the first season of House of
Cards. When loaded into the kd-tree, Dataset A yields 584,776
windows and Dataset B yields 77,048 windows.

A. Assessing Stage 1’s Filtering Capability

The purpose of Stage 1 is to present only the most relevant
candidate windows to Stage 2, thereby improving query
efficiency. As such, our first test is designed to gauge the
ability of Stage 1 to filter the video database for candidate
windows. For this test, we built a database from Dataset A and
proceeded to conduct a range search for each window in this
same database. For each search, we recorded the number of
windows returned in the shortlist. Since each search represents
a window that is also in the database, every search will return
at least one result. This test was conducted twice: once with a
set of loose ranges and once with a set of tight ranges. The
loose range search was conducted with ±2% for the 1

st

Dimension and ±0.015 for the 2
nd

 through 6
th
 Dimensions. The

tight range search was conducted with ±1% for the 1
st

Dimension and ±0.01 for the 2
nd

 through 6
th
 Dimensions. Fig. 6

depicts the results as an inverse cumulative distribution
function.

For the loose range test, 7.4% of all range searches returned
one result (i.e. the same window used for the search), 95% of
all range searches returned no more than 314 candidate
windows, and no search returned more than 1351 candidate
windows. For the tight range test, 28.5% returned one result,
95% returned no more than 37 candidates, and no search
returned more than 214 candidates. In other words, all tight
range searches returned less than 0.037% of the database and
all loose range searches returned less than 0.23% of the
database.

B. Full System Assessment

In order to evaluate our technique in a “real world” setting,
we streamed 25 movies from Dataset A using the same
hardware that generated Fig. 4 within a residential home. We
placed the wireless router and Kali Linux laptop on the first
floor of the home, and the Windows 7 laptop was placed on the
second floor. The router was configured to use 2.4GHz channel
11. The home has a 30 Mbps downstream and 10 Mbps
upstream Internet connection.

The order and selection of the 25 movies were determined
by shuffling the movie titles and streaming the first 25 listed.
For each movie, we first skipped to a random scene in the
middle of the movie and then allowed the stream to reach
steady state playback before beginning the wireless capture on

Fig. 6. Cumulative probability of Stage 1 shortlist sizes when performing

a range search of Dataset A.

1

10

100

1000

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

M
ax

im
u
m

 N
u
m

b
er

 o
f

C
an

d
id

at
e

W
in

d
o

w
s

R
et

u
rn

ed

b
y
 R

an
g
e

S
ea

rc
h
 (

lo
g
 b

as
e

1
0

 s
ca

le
)

Cumulative Probability

1st Dim: 2%, 2nd-6th Dim: 0.015 1st Dim: 1%, 2nd-6th Dim: 0.01

214

1351

Loose Ranges Tight Ranges

Loose

95% ≤ 314

Tight

95% ≤ 37

the eavesdropper laptop. Each capture was limited to exactly

five minutes via the Linux timeout command.

We then ran a series of tests on the 25 capture files using a
variety of thresholds to assess the technique’s performance at
each stage. Specifically, we tested Stage 1 using the loose and
tight range searches across increasing thresholds for the Stage
2 Pearson’s correlation. These tests were done for both of
Stage 3’s modes. For each permutation of thresholds and
modes, we ran our program on the 25 captures and calculated
its overall accuracy (total number of correct identifications /
25).

Figure 7 summarizes our results. Over all of the
permutations of thresholds, Pearson’s correlation (Stage 2) had
the greatest overall effect on accuracy. As the threshold for
Pearson’s correlation rises, Stage 2 becomes an increasingly
important component of the technique’s accuracy. At optimal
ranges for Pearson’s, there is no difference in accuracy among
the Stage 1 thresholds. In other words, loose/fast and tight/fast
converge to the same results, and loose/slow and tight/slow
converge to the same results.

Peak accuracy for both fast and slow modes is reached
between r = 0.865 and r = 0.91, with slow mode achieving an
accuracy of 0.96 and fast mode achieving an accuracy of 0.92.
Accuracy then wanes as Pearson’s r is increased beyond 0.91.
At higher values for r the technique begins to reject correct
windows as the program fails to allow for variation that arises
from factors such as network conditions and the inaccuracies of
our throughput estimation technique.

While the effect of Stage 2 is significant, tuning Stage 1
thresholds is important. Indeed, we see that moderate accuracy
can be achieved even at low thresholds for Pearson’s when
using a tight range search, particularly when coupled with
Stage 3’s fast mode. This performance is due to the
combination of Stage 1’s ability to filter the database for
relevant windows and fast mode’s requirement that the offset
between two candidate windows in a fingerprint must equal the
time difference in the capture file. Moreover, a tight range
search would be advantageous since it sends fewer candidate
windows to Stage 2, thereby reducing the execution time of the
program.

Across all of our tests, our technique never identified a
single window from the Star Trek Into Darkness capture with
even the lowest of thresholds for Stages 1 and 2. While this
issue could be due to a failure of our algorithm, it is more
likely due to a faulty capture (e.g. if the Netflix stream did not
maintain steady state playback for a sufficient length of time).
In the future, we plan on capturing redundant samples over
different time periods to better identify and analyze the effects
of network conditions on our identification algorithm.

C. Analysis of Identical Footage

When our technique is used to compare the fingerprints
themselves, it reveals an interesting phenomenon: identical
footage can produce strikingly similar segment sizes across
videos. To demonstrate this effect, we conducted a pairwise

Fig. 7. The effect of increasing Stage 2 thresholds on accuracy.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
cc

u
ra

cy
 (

T
o

ta
l

C
o

rr
ec

t
/

T
o

ta
l

C
ap

tu
re

s)

Stage 2: Pearson's Correlation Threshold

Loose / Fast Loose / Slow Tight / Fast Tight / Slow

Accuracy = 0.96

r
=

 0
.8

6
5

r
=

 0
.9

1

Accuracy = 0.92

Fig. 8. Scenes within House of Cards where identical footage results in

similar segment sizes.

(a) Fingerprint similarity due to the House of Cards opening credits,

depicted in gray (each episode begins with a unique scene before playing

the credits).

0

0.5

1

1.5

2

2.5

1 6 11 16 21 26 31 36

V
id

eo
 S

eg
m

en
t

S
iz

e
(M

B
)

Video Segment Number

House of Cards s01e05, 2350 kbps, 0'16"-2'40" House of Cards s01e09, 2350 kbps, 0'32"-2'56"

(b) Fingerprint similarity due to the House of Cards end credits, depicted

in gray.

0

100

200

300

400

500

600

1 6 11 16 21 26 31 36

V
id

eo
 S

eg
m

en
t

S
iz

e
(k

B
)

Video Segment Number

House of Cards s01e07, 560 kbps, 51'12"-53'40" House of Cards s01e10, 560 kbps, 49'40"-52'08"

comparison between every fingerprint in Dataset B (excluding
comparisons between the same episode) and identified sub-
regions where our technique could not distinguish between the
different videos.

For this test, we set Stage 1 to use a tight range search, we
set Stage 2 to a minimum r of 0.91, and we used Stage 3’s fast
mode for the final declaration. Of the 4,992 fingerprint
comparisons, two match-ups produced indistinguishable sub-
regions, depicted in Fig. 8. In both instances, the confusion is a
direct result of similar segment sizes produced by either the
opening credits or the end credits. Interestingly, Wang [14]
notes that Shazam produces false positives under similar
scenarios (e.g. when a song samples audio from another track).

VII. COUNTERMEASURES

There are several potential countermeasures to our
inference method. First, our method is only effective on videos
that exhibit a high degree of segment size variation between
windows, thus any service that uses either (i) VBR encoding
within rigid bitrate constraints or (ii) CBR encoding will be
resistant to our attack. That being said, it is doubtful that
DASH service providers would be inclined to modify their
encoding parameters, as any change to video quality might
have a negative effect on user satisfaction.

An alternative, then, is to alter steady state playback so that
video segments are not requested at fixed intervals. The naïve
approach would be to simply introduce random offsets between
requests. Li et al. present a rate adaptation algorithm in [6] that
tailors its request rate in order to better gauge the available
bandwidth. This technique both eschews the standard form of
steady state playback and improves streaming performance.

VIII. RELATED WORK

There is an extensive body of work on traffic classification
based solely on data sizes and timing, of which [2], [3], [7],
[12], and [15] represent only a small sample. Although our
technique is focused on HTTP traffic, as are [3], [7], and [12],
we are able to exploit characteristics of DASH that are not
present in other HTTP applications, namely that (i)
authoritative data sizes can be easily obtained, (ii) objects are
requested sequentially, and (iii) timing is predictable during
steady state playback.

Most similar to our work is that of Saponas et al. [11], who
present a Discrete Fourier Transform (DFT) based approach to
identify the content being streamed by a Slingbox Pro. In
general, their technique required wireless captures that ranged
from 10 to 40 minutes. Although Saponas et al. implored both
the signal processing and security communities to confront the
privacy issues related to VBR-based streaming, our work
demonstrates that these issues have not been resolved.

IX. CONCLUSION

We have demonstrated that it is possible to identify Netflix
videos streamed over encrypted 802.11n connections with
greater than 90% accuracy in less than five minutes. In other
words, despite encryption at the link layer and application layer
(DRM), it is possible to eavesdrop on a user’s video stream.

Since our technique only relies on the interplay between VBR
encoding and steady state playback, we believe that this
presents a potential privacy concern for the entire DASH
industry, and we echo previous authors’ concerns regarding the
inherent weakness of VBR to throughput analysis. We have
made our code and data available to the research community.

As part of our future work we plan to create additional
captures over various network conditions. The larger dataset
will enable us to better characterize the accuracy of our
algorithm and its ideal thresholds, better analyze the
deleterious effects of network conditions on steady state
playback, and determine what the effects are, if any, of varying
the DASH client bandwidth. Furthermore, to account for
windows that are naturally indistinguishable (e.g. opening
credits of the same series) we plan to create an additional field
in the database to flag these windows. We can then add logic to
the algorithm that will continue to capture if the sniffed traffic
is potentially one of the flagged windows. Another area of
consideration is the development of a threshold for the slow
detection method that will determine the minimal number of
windows that should be collected in order to make an accurate
claim, i.e. if the threshold is not met, then the slow method
would declare that the video does not exist in its dataset.

REFERENCES

[1] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Communications of the ACM, vol.18, no. 9, Sep. 1975.

[2] L. Bernaille, R. Teixeira, I. Akodkenou, A. Soule, and K. Salamatian,
“Traffic classification on the fly,” ACM CCR, vol. 36, no. 2, pp. 23-26,
Apr. 2006.

[3] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson, “Touching from a
distance: Website fingerprinting attacks and defenses,” ACM CCS, pp.
605-616, 2012.

[4] GitHub Repository, https://github.com/andrewreed.

[5] ISO/IEC 14496-12:2012, http://standards.iso.org/ittf/PubliclyAvailable
Standards/c061988_ISO_IEC_14496-12_2012.zip.

[6] Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A. Begen, and D. Oran, “Probe
and adapt: Rate adaptation for HTTP video streaming at scale,” IEEE

Journal on Selected Areas in Communications, vol. 32, no. 4, pp. 719-
733, Apr. 2014.

[7] M. Liberatore and B. N. Levine, “Inferring the source of encrypted
HTTP connections,” ACM CCS, pp. 255-263, 2006.

[8] Microsoft Silverlight, https://www.microsoft.com/silverlight.

[9] Sandvine Report: Netflix and YouTube Account for 50% of All North
American Fixed Network Data, https://www.sandvine.com/pr/
2013/11/11/sandvine-report-netflix-and-youtube-account-for-50-of-all-
north-american-fixed-network-data.html.

[10] Sandvine Report: Netflix Dominates (Still), Amazon Instant Video
Growing, https://www.sandvine.com/pr/2014/11/20/sandvine-report-
netflix-dominates-still-amazon-instant-video-growing.html.

[11] T. S. Saponas, J. Lester, C. Hartung, S. Agarwal, and T. Kohno,
“Devices that tell on you: Privacy trends in consumer ubiquitous
computing,” USENIX Security Symposium, pp. 55-70, 2007.

[12] Q. Sun, D. R. Simon, Y. Wang, W. Russell, V. Padmanabhan, and L.
Qiu, “Statistical identification of encrypted web browsing traffic,” IEEE
Symposium on Security and Privacy, pp. 19-30, 2002.

[13] Tamper Data, https://addons.mozilla.org/en-us/firefox/addon/tamper-
data.

[14] A. L. Wang, “An industrial-strength audio search algorithm,” ISMIR, pp.
7-13, 2003.

[15] C. V. Wright, F. Monrose, and G. M. Masson, “On inferring application
protocol behaviors in encrypted network traffic,” JMLR, pp. 2745-2769,
2006.

